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Abstract 

 

This thesis presents both experimental investigations and demonstration on the use 

of an AC voltage induced electric field to actively control the size or frequencies of 

droplet generated in a microfluidic flow focusing device. In the first part, we 

demonstrate our patented technology where the concept is realized as a new 

method of controlling the droplet sizes or frequencies. We show that the concept can 

be applied for both the case of with and without the orifice in the microfluidic flow 

focusing geometry. 

Next, we systematically investigate the influences of various parameters such as 

frequencies of sinusoidal signal, conductivities of the dispersed phase fluid, different 

electrode configurations, ionic properties of the dispersed phase fluid and different 

volumetric flow rates. We present different electrical circuits to model the different 

electrode configurations and show that the voltage at the tip of the dispersed phase 

fluid is the underlying cause for the experimental observations seen in the different 

conditions. Using the voltage divider rule, the voltage at the tip of the dispersed 

phase fluid is estimated using the ratio of the frequency (f) of the signal to the 

conductivity (к) of the dispersed phase fluid. In the case of electrode in configuration 

A, we observed that the system behaves akin to a high pass filter around the value 

of about f/к = 4 x 105 m/F when the experimental data are rescaled. Phase diagrams 

illustrating the effect of both the frequencies and conductivities of the different 

electrode configurations are also presented. In electrode configuration A and C, we 

observed a transition from the unstable jetting to the dripping mode at a similar value 

of about f/к = 5 x 105 m/F. This result agrees to our hypothesis where the voltage at 

the tip of the dispersed phase fluid decreases significantly behaving akin to a high 

pass filter below the stated ratio of f/к. 

We also present an electrohydrodynamic model to account for both hydrodynamic 

and Maxwell stresses using an effective capillary number Caeff. This non-dimensional 

number takes into account a capillary number Ca and an electrical bond number Be. 

Using the model, the diameters of the droplets can also be estimated by different 

power laws when formed in either the dripping or jetting regime. However, this model 

does not explain the transition between the droplet formation regimes. 
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In the dynamical studies, we present the concept of using this AC voltage induced 

electric field to play musical sound tracks. A standard epifluorescence optical setup 

is used to detect the frequencies of the generated droplets. The frequencies of the 

generated droplets are then modulated by changing the applied AC voltage to play 

different musical notes. We examine the frequency range of the system and show 

that the range allows access to play all the different musical notes within one octave. 

We also examine the response time of the system using an amplitude modulation 

signal at different voltages and frequencies. Experimental results show that the 

system is capable of modulating the frequencies of the generated droplets in the 

order of milli-seconds which is suitable for playing musical sound tracks. Lastly, we 

use this high speed of control in the droplet formation frequencies as a microfluidic 

jukebox. Different musical song tracks namely Ode to Joy and The flight of the 

bumblebee are played by rapidly changing the droplet generation frequencies using 

different AC voltages. 
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Chapter 1: Introduction 

 

1.1 “Why are people interested in active droplet generation?” 

 

This question has been pondering over my mind since the start my PhD tenure. Are 

people really interested in this? What does this bring to the field? I found that the 

answers to the question are implicit and multi-fold.   

The first part of the answer to the question is that droplet microfluidics is a field with 

seas of applications [1]. The fundamental features of the system attract thousands of 

scientists and researchers into the field due to the potential impact offer by the 

technology [2]. Till date, various applications have been demonstrated using droplets 

as a chemical microreactor [3], single cell analysis [4], drug screening [5], particle 

synthesis [6], food engineering [7], high throughput biological assays [8], protein 

crystallization [9] and DNA amplification [10]. The list of applications goes on and is 

extensive. But it is apparent that what one could do with droplet microfluidics is 

boundless and immeasurable. The interest in active droplet generation stems from 

the possibilities of extending the current usage to a whole new level and bringing on 

many more other novel applications. Active droplet generation increases the 

robustness of the system and offers greatly flexibilities in fluid manipulations. It also 

allows a much more complex operation to be performed at a greater ease due to the 

integration of an active element which offers an additional degree of control. Active 

droplet generation offers the solution for the realization of a complex lab-on-a-chip 

operation [2] which requires a greater level of fluid control. 

The second point is the ability to generate droplet on demand and exquisite control 

over each individual droplet generated. This unique form of control and manipulation 

can only be achieved by the use of active droplet generators. This ability stretches 

immensely on what one could do with droplets and also opens up the doors to many 

other possible applications. In summary, active droplet generators offer many 

distinctive advantages which appeals to users in different ways. The interest in active 

droplet generators is appealing and a topic worthwhile for investigation.  
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1.2 Droplet generation and manipulation 

 

The problem that we are addressing is limited to droplet generations in an enclosed 

microfluidic device where the fluids are inside enclosed microchannels. We 

confronted only two phase flow conditions where two immiscible fluids are used to 

form droplets. In these conditions, we examine the difference between different 

passive and active droplet generation methods. We conclude by examining the 

needs for a dynamic and robust method of active droplet generation as a tool for 

different bio-chemical applications. 

 

1.2.1 Passive droplet generation 

 

Passive droplet generation is defined here as the formation of droplets by only 

hydrodynamic means. Droplets are formed by flowing two immiscible fluids into 

microfluidic devices either by using flow rate control syringe pumps or controlling of 

inlet pressures via pressure sources. A detailed study on the differences between 

the two fluid delivery systems can be found in the following work [11]. In order to 

prevent droplet coalescence and condition favorable to droplet generation, 

surfactants are often added into either one of the two fluids. In brief, the use of 

surfactants decreases the interfacial tension between the two fluids and allows 

droplets to be stored without coalescences for a much longer period of time. The use 

of surfactants is also useful for many bio-chemical applications which allow droplets 

to be re-injected into devices for subsequent manipulations [12, 13]. 

In passive droplet generation, four of the commonly used geometries are T-junction 

[14, 15], flow focusing [16-18], co-flowing [19-21] and head-on [22, 23]. The droplet 

generation mechanism is similar in a way but yet distinctive differences can be 

observed. Each of the geometry possesses its individual uniqueness. Different 

droplet formation regimes and non-trivial scaling laws are derived for each of the 

geometry. Figure 1.1 illustrates each of the commonly used geometry. 
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T-Junction

Flow Focusing

Co-Flowing

Head-on  

 

Figure 1.1: Schematic sketches of the commonly used droplet formation geometries. 

The blue region represents the dispersed phase fluid and the grey region represents 

the continuous phase fluid. 

 

In the above mentioned droplet formation geometries, the size of the droplets formed 

can be predicted by balancing the Laplace pressure of the dispersed phase fluid with 

the shear force [15] exerted by the continuous phase fluids using equation (1.1): 

 

 r



  (1.1) 

 

where r is the radius of the droplets formed, σ is the interfacial tension between the 

fluids,   is the viscosity of the continuous phase fluid and   is shear rate which can 

defined as (1.2): 

  
0

2

y


   (1.2) 
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where   is the velocity of the fluid and 0y  is the channel radius at the center of the 

flow estimated by triangular approximation. 

 

Substituting equation (1.2) into (1.1), we get: 

 

 
0

2

y
r




  (1.3) 

 

From the above simple equation (1.3), it can be deduced that the radius of the 

droplet is a function of the interfacial tension, geometry of the channels, flow rates of 

the fluids and the viscosities of the fluids. However, this simplified predication does 

not accurately describe the complex flow behavior. The predicated droplet diameter 

and the measured diameter deviates by a factor of two when compared by Thorsen 

et al. A more sophistical and non-trivial scaling law can be obtained from these 

various literatures [24-26]. These scaling laws take into account the volumetric flow 

rate ratios, viscosity ratio between the fluids and the aspect ratios between the 

channel dimensions.  

In the above, it is apparent that passive droplet generators have limited control over 

size of the droplet formed once the fluids and the geometries of the channels are 

fixed [27]. Although it can be argued that physical properties such as the interfacial 

tension σ and   can still be varied with the use of different concentrations or types of 

surfactants [28] and by adding glycerol [29] into fluids, this is often non-desirable due 

to the specific needs of different applications. Hence in such conditions, the sole 

mode of changing the size or frequency of droplet generation is limited to 

manipulating the flow conditions, i.e., changing the applied volumetric flow rates or 

inlet pressures. This limitation warrants for the need of active droplet generator 

which provides more flexibility on the control of droplet size and frequency generated 

in a microfluidic device.  
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1.2.2 Active droplet generations 

 

Active droplet generations here refer to the use of external perturbations to “modify” 

the flow system and thus providing an additional means of control over the droplet 

generation in microfluidic devices. Often, active droplet generations are achieves 

through modifications of the flow parameters, interfacial tensions or the viscosities of 

the fluids with the use of an external source. External sources demonstrated till date 

includes thermo-capillary [30-34], pneumatic [35-37], piezoelectric [38], magnetic 

[39-41], electric [42-49], acoustic [50-52] and optic [53]. The working principle of 

each external source is different and unique.  

Active droplet generation provide several distinct advantages over the passive 

counterpart. Firstly, the use of external sources allows a more robust, flexible and 

dynamic control on the droplets generated. For example, external sources can be 

easily turned on and off depending on the user needs and the required application. 

The ability of active control on demand opens up different possibilities for many 

different applications. Secondly, the use of external sources also allows the 

frequency of the droplets to be manipulated at ease. The frequency of the droplets 

controls the velocity of the droplets which in turn determine the processing time 

within a specific reaction. Actively manipulating the frequency of the droplets allows 

users to tune towards velocity of the droplets to meet the requirement of the process. 

Droplets are also often used as an individual “micro-reactor” in droplet based 

microfluidics. In such a scenario, the size of the droplets determines the sensitivities 

of the encapsulated content to be analysed. The use of an active control allows a 

greater flexibility when encapsulating biological materials of different sizes. Last but 

not least, active droplet generation also allows droplets to be produced at a faster 

rate when the accessible flow rates are limited by geometrical constraint such as the 

size of the orifice or the fluidic pressures that the device can withstand. The ability to 

produce droplets at a faster rate is desirable for many applications which require 

high throughput droplet production. 

On the other hand, the active droplet generation has also several disadvantages. 

Firstly, the use of external sources inherently implies that additional equipment is 

needed to be incorporated into the system. The use of external sources increases 
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not only the complexity of the operation but also the cost needed to run the process. 

For example, in electric field mediated experiments [54], a function generator is 

needed to produce the electrical signal for the droplet manipulation. In order to 

create comparable electric field strength, this is often coupled to a high voltage 

power amplifier to magnify the signal. Secondly, some external sources of actuation 

require complicated fabrication methodology which requires high level of engineering 

skill sets. In thermally mediated droplet generation [55], micro-heater and sensors 

are integrated into passive droplet generators to induce localised heating and 

temperature sensing. The fabrications of such devices are labour intensive as it 

requires long man hours in the cleanroom to deposit the metals and also careful 

alignment of the micro-heater and sensors at the junction of droplet formation. Last 

but not least, active droplet generators introduce additional complexity into the 

already complicated flow behaviour of the fluidic system. Comparing with the passive 

systems which is well understood and studied, the droplet formation mechanism and 

scaling laws are often briefly explained and tackled. The ambiguity in understanding 

of the system is a major shortcoming which in turn decreases the popularity of 

implementing external actuating sources into passive droplet generators. 

Nevertheless, the use of active droplet generators still remains as an attractive 

solution for many research applications and the realization of complex lab-on-chip 

operation which require greater control and flexibility in fluid manipulation. The 

exhaustive list of benefits offered by different active method of control justified the 

usage and incorporation into different system. It is also apparent the benefits of 

active droplet generators will be an enticing alternative in the upcoming days. 
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1.3 Fluids interaction with an electric field 

 

1.3.1 Electrohydrodynamic concept  

 

The concept of electrohydrodynamic (EHD) is due to the interaction between electric 

fields and fluids. The difference in electrical properties between the fluids affects the 

force balance at the fluid interface which acts to either stabilize or destabilize the 

interface [56]. The electric field induces electrical stresses at the interface between 

the fluids due to a conductivity or permittivity gradient. To generate the electric field, 

different approaches have been developed using either a direct current (DC) or 

alternating current (AC) voltage source. Electrodes of different geometries and size 

have also been demonstrated using the concept of EHD. However, aspects relating 

to droplet generation will be the main focus here to limit the discussion since vast 

amount of literatures are available and not within the scope of the thesis. 

Currently, two different techniques are employed using EHD to produce droplets. 

Monodispersed droplets or droplets with a wide range of sizes are produced either 

by electrospraying or single droplet generation [57]. In both methods, droplet 

generations are often due to the accumulation of charges at the interface of the fluid. 

Droplets are generated when the interfacial charges overcome the capillary pressure. 

Figure 1.2 illustrates the droplets formed by electrospraying. 

 

 

   

 

 

 

Figure 1.2: First experimental photo by John Zeleny in 1917 depicting 

electrospraying of droplets due to the instabilities of electrified liquid surface [58]. 
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This phenomenon was later further described and quantified by Sir Geoffrey Taylor 

in the year 1964. In the article [59], he first proves that the EHD instabilities arises 

due to the pressure difference across the droplet interface which invalidate the 

previous assumption made by Zeleny that the instabilities arises when the pressure 

inside and outside the droplet is the same. The article also shows that the formation 

of the cone-jet or Taylor’s cone is the onset of the electrospraying process. The 

Taylor’s cone was measured to have a semi-vertical angle of 49.3° as shown in 

figure 1.3. 

 

 

 

  

 

 

 

 

Figure 1.3: Formation of the Taylor’s cone[59]. The broken lines are at an angle of 

98.6°.  

 

Following his works, a large number of research have been done to elucidate the 

behavior with both DC and AC electric fields capitalizing on the interest for 

nanotechnology [60]. 

Electrohydrodynamic techniques are also employed for single droplet generations to 

produce droplets on demand [57, 61]. Using a similar mechanism, highly 

monodispersed droplets in the range of micro and pico liters with standard deviation 

less than 2% can be produced. 
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1.3.2 Electrocapillarity 

 

Electrocapillarity phenomena are observed in various phenomenon such as 

electrowetting (EW), continuous electrowetting (CEW), electrowetting on dielectric 

(EWOD) and electric double layer (EDL). It was first investigated by Lippmann in 

1875, in which he observed a capillary rise effect due to the change in surface 

tension under an electrical effect [62]. The term was later coined based on the two 

observed effects. Building upon his findings, he invented the electrometer (Figure 1.4) 

which was later used in the first electrocardiography (ECG) machine.  

 

 

Figure 1.4: Drawing of the lippmann’s electrometer. 

 

In a boarder sense, electrocapillarity can also be defined as a change in the 

interfacial tension with an applied potential difference [63] which can also occurs at 

the interface between immiscible fluids. Watanabe investigated extensively the 

electrocapillarity phenomena at oil-water interfaces with different types of fluids and 

surfactants [63-65]. He found that the interfacial tension between the fluids changes 



11 
 

with the applied potential difference and this is dependent on the type of fluids and 

surfactants used. 

In retrospect, the combination of these effects can be applied to the generation of 

droplets in microfluidic devices via the electric bond number [66] and the capillary 

number described previously. The electric bond number describes the deformation of 

droplets due to an applied electric field which is opposed by the interfacial tension 

can be expressed as: 

 

 

2

e

E r
Bo




   (1.4) 

 

Where ɛ is the electric permittivity of the surrounding fluid, E is applied electric field 

strength, r is the radius of the droplets and  is the interfacial tension between the 

fluids.  

 

In the above proposed dimensionless number, most studies focus on using a DC 

voltage induced electric field and investigating the effects on the deformation of 

droplets. Relatively few studies are done using an AC voltage induced electric field. 

Detailed experimental studies on this are essential to enhance the understanding on 

this topic. Both the proposed dimensionless numbers (Electric bond number and 

Capillary number) and the correlationship between them will be the focus of this 

thesis. The coupling and interaction of an AC electric field with the droplet formation 

mechanism in a flow focusing configuration will be explained in detailed in the later 

chapters.  
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1.4 Thesis subject 

 

In the following chapters, we will use the variation of the AC voltage to study the 

influences on the droplet formation in a microfluidic flow focusing device. This novel 

method of active control has not been studied or demonstrated before. In a first part, 

we will study how such variations are influences by various parameters such as flow 

rates, conductivities of the fluids, frequencies and electrode connections. In the 

second part, we investigate the dynamics of the system by looking into the response 

times of the system and the usage to play different musical notes. We also 

demonstrate for the first time the use of such fast and reliable control to play different 

musical sound tracks in the microfluidic jukebox that we developed.  
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Chapter 2: Concept 

 

2.1 Introduction 

 

The use of microfluidic devices to generate droplets was first introduce by Thorsen et 

al. in 2001 [15]. However, it was the advent of soft lithography techniques which 

allow easy access to this field and thus contributing to the widespread usage. Till 

date, polydimethylsiloxane (PDMS) it still widely used as a replicating material to 

fabricate microfluidic devices [67, 68]. This is mainly due to reasons such as low cost 

of production and fast turn over time for conceptual testing. As mentioned previously, 

four different types of geometries are commonly used to produce droplets in 

microfluidics using PDMS to fabricate microfluidic devices. Among them, the flow 

focusing geometries is regarded as the preferred choice as it is relatively easier to 

use to form droplets. The flow focusing was introduce by both Anna et al [16] and 

Dreyfus et al [18] in 2002. Droplets are formed by first focusing a fluid in the center 

channel and then a second immiscible fluid flowing at both the side channels exert 

pressure and viscous stresses to deform the interface. Different variations of the flow 

focusing geometries have evolved with time and many detailed studies have been 

done to elucidate the complex flow behavior [24-26]. 

Different types of active droplet generators have been developed to overcome the 

limitations of the passive counterparts. One such limitation is the size of the orifice in 

the flow focusing configuration. In such a configuration, the size of the droplet 

produce depends strongly on size of the orifice which limits the flow of the fluids. In 

the following, we will first review the flow focusing geometry to understand the 

complex nature of the droplet formation mechanism, different geometrical variations, 

proposed scaling laws and also the importance of the wetting abilities of the fluids. 

Different types of active generators are also reviewed and compared to unravel the 

interest on using an AC voltage induced electric field which is the main motivation of 

this thesis. Understanding all of the above, it will provide a foundation for the basis of 

this thesis and also develop the experimental approach to adopt to tackle the scope. 
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2.2 Microfluidic flow focusing  

 

2.2.1 Pioneering works 

 

The use of a microfluidic flow focusing device to generate monodispersed droplets 

results in a paradigm shift of droplet production from a “top down” to a “top up” 

approach [16]. This shift stems from the ability to create droplets of highly precise 

volumes at extremely high throughput. Two factors undermine the stable production 

of droplets from an “ordered” to a “disordered” state [18]. Firstly, the wetting of the 

fluids with channel walls determines whether stable oil-in-water (O/W) or water-in-oil 

(W/O) droplets can be formed [25, 26]. Secondly, the concentration of surfactants in 

the fluids has to be well above the critical micelle concentration (CMC) to maintain a 

stable interface which promotes droplet generation [18]. 

Using a hydrodynamically focused thread, Xu et al demonstrated the precise control 

on droplets generated. Highly monodispersed droplets with polydispersity of less 

than 1% can be generated [69] with a silicon microfluidic device. However, the 

breakup of the center dispersed fluid thread depends on a number of factors such as 

the interfacial tension, viscosity and geometry of the channel. The physics and the 

breakup mechanism of the droplet were not well explained in the manuscript. Figure 

2.1 illustrates the ability to form uniform droplets formed at different flow conditions 

using such method. 

 

 

Figure 2.1: Generation of monodispersed droplets at different flow conditions [69].  
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2.2.2 Three dimensional (3D) microfluidic devices 

 

Several groups proceed on to enhance the performance of droplet generation with 

sophisticated fabrication techniques and microfluidic devices. This is achieved 

through the use of a three dimensional (3D) orifice or devices which focused the 

droplet breakup at the orifice. In this way, maximal shearing stress is exerted on the 

dispersed phase fluid. This assisted the formation of droplets as the flow of 

continuous phase fluid is now able to encapsulate the dispersed fluid. Takeuchi et al 

first uses glass capillaries to create an axisymmetric flow-focusing microfluidic device 

(AFFD) in PDMS [70]. This allows polymer coated droplets to be generated for 

microencapsulation purposes. He suggested that this method is more superior than 

the two dimensional (2D) microfluidic generators as this avoids the problem of the 

dispersed fluid wetting or adhering to the channel walls. Huang et al then proposed 

using a three layered SU-8 microfluidic device to create the 3D microfluidic channels 

[71]. The main advantage of his system over the AFFD is the eliminated of the need 

of alignment of the capillaries and also the flexibility in the channel dimension. He 

also demonstrated that his system can be used in both open and closed 

configuration generating both W/O and O/W droplets. However, physical insights to 

his system were not investigated thoroughly. 

Yobas et al used a cusp-like edge orifice to investigate extensively the difference 

between the 2D and 3D microfluidic flow focusing devices [72, 73]. The 2D device 

was fabricated in PDMS using convention soft-lithography technique and the 3D was 

fabricated by reactive ion etching (RIE) of silicon. Pure fluids without surfactants are 

tested to allow accurate measurements of the interfacial tension between the fluids. 

A computational fluid dynamic (CFD) simulation was also done to understand the 

complex flow behavior during droplet generation. Both experimental and simulation 

results show large improvement in the droplet generation rate. Droplets can also be 

formed in the range of about 10 kHz or higher as the 3D devices allow higher flow 

rates to be used as compared to the 2D devices. The authors also observed a 

delayed in the onset of the jetting regime and droplets formed mainly in the dripping 

regime at a wider range of flow rates. Theoretical modeling predicting the diameter of 

the droplets and droplet generation frequency was also proposed and compared with 

experimental results. The proposed models fit well with the experimental data when 
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the droplets are formed in the dripping regime and deviates when the droplets are 

formed in the jetting regime. This is mainly because droplets formed in the jetting 

regime are mainly due to Rayleigh plateau instabilities [74]. Figure 2.2 and 2.3 below 

illustrates the 2D and 3D microfluidic devices used.     

 

 

 

Figure 2.2: (a) 2D flow focusing in PDMS, (b) & (c) are the SEM images [72]. 

 

 

 

Figure 2.3: (a) to (c) are the 3D flow focusing device and (d) simplified sketch of the 

3D geometry used for the CFD studies [72]. 
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It is apparent that 3D microfluidic flow focusing offers several distinct advantages 

over the 2D counterparts. However, the usage of such devices is still not widespread 

and preferred. This is probably due to the complex fabrication technique that is 

needed to master before one can effectively implement for usage. 

 

2.2.3 Geometrical variations of flow focusing 

 

The performance of droplet generation in microfluidic devices depends strongly on 

the geometrical designs of the microfluidic channels. In brief, the designs of the 

microfluidic channels affect the flow profile of the fluids and location of the droplet 

breakup. Indirectly, the accessible range of capillary number which determines the 

dominant mechanism of droplet generation and the rate of droplet production are 

also affected. Abate et al studied the impact of the inlet geometry in droplet formation 

by varying both the channel widths and angle of injection [75]. He observed that T-

junction droplet makers produce droplets at low and moderate capillary number. On 

the other hand, flow focusing droplet makers produce droplets at moderate and high 

capillary number. The observation occurs when he used immiscible fluids with 

viscosity ratio of about 1. This stark contrast between the two is due to the wall effect 

in the T-junction configuration which smooths out the instabilities and suppressed the 

formation of droplets. As a result, the jetting regime is suppressed and the formation 

of a parallel flow between two immiscible fluids is induced. The experimental results 

also suggested that the use of the flow focusing geometry would enable the 

production of a larger amount of droplets which is useful for high throughput 

applications as droplets can be formed at higher capillary numbers.   

Several geometrical variations of the flow focusing configuration have since evolved 

throughout the years. Tan el at introduces the expanding nozzle to create a velocity 

gradient at the orifice [76]. This enables the break of droplet to occur right at the 

orifice where the velocity is greatest. Chen et al complement the idea by using a 

converging and diverging nozzle [77] at the junction of droplet formation. He found 

that a greater control on the size of the droplet is achieved with the modification and 

the size of the droplet formed can also be reduced significantly. This is also 

dependent on the dimension of the orifice which affects the shearing rate on the 



19 
 

dispersed phase fluid.  On the contrary, several works also focused on using straight 

cross junctions to study the complex nature of droplet formation [75, 78-80]. Cubaud 

et al uses a square geometry to investigate extensively the formation of O/W 

droplets using fluids with different viscosities and interfacial tension. Tan et al uses a 

symmetric cross flow but with different inlet/outlet widths to study the formation of 

both O/W and O/W droplets. In both studies, different scaling laws, flow regimes and 

the effect of fluid properties are also presented and discussed. Several numerical 

simulation works [79, 81] have also been done to elucidate the scaling laws and the 

dependence of the size of the droplets on both the capillary number and flow rate 

ratio. 

On a broad perspective, geometrical variation of the flow focusing can be classified 

into two types, mainly with and without the orifice. Figure 2.4 illustrates the 

schematic sketch of both cases. In the case of without the orifice, the geometry is 

often referred also as the cross flow configuration. In this geometry, the flow of the 

dispersed fluid is accelerated towards the junction and reaches a maximum at the 

entrance of the outlet channel. The flow profile is then maintained throughout the 

straight channel. On the hand, for the case of with the orifice, the constriction at the 

junction changes the flow profile of the fluids. Fluids are accelerated and “squeezed” 

at the orifice and thus producing droplets of smaller size. The flow profile at the outlet 

also changes due to the expansion in the channel which slows down the flow of the 

droplets. 

 

 

 

Figure 2.4: Schematic sketch of two main types of the flow focusing geometry. 

 

Without orifice With orifice
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Nevertheless, the understanding on the intrinsic differences between each 

geometrical variation will allow the selection of the most appropriate geometry to use 

for this study.  

 

2.2.4 Droplet formation Regimes 

 

The formation of droplets in microfluidic device is characterized and can be 

described by distinctive droplet formation regimes. The droplet formation regimes 

illustrate the location of the droplet breakup, the dominant stresses involved in the 

breakup process, relative size of the droplets and non-trivial scaling laws predicting 

the droplet volume [17, 25, 26, 78]. In order to quantify the regimes, often either the 

capillary numbers or the flow rate ratios are calculated and used. However, these 

numbers often act only as a gauge and reference. The critical capillary number 

dictating the transition between each regime differs slightly depending on the 

dimensionless variables of the system, channel designs and also the physical 

properties of the fluid.  

In microfluidic flow focusing, Anna et al identified four different droplet formation 

regimes. The four main droplets formation modes are geometry-controlled breakup 

or squeezing, dripping, jetting and thread formation. In brief, the squeezing regime 

occurs at low capillary number where droplets are the neck of the dispersed fluid is 

squeezed between the confinements of the channel walls. The dripping regime 

occurs at moderate capillary number where droplet breakup is due to mainly the 

shear stress exerted by the continuous phase fluid. In jetting, droplets are formed at 

high capillary numbers and droplet breaks up via Rayleigh plateau instability further 

downstream of the channel. The thread formation regime occurs at low capillary 

number and only with the presence of large amount of surfactants.  Figure 2.5 and 

2.6 depicts the different droplet formation regimes occurring at different capillary 

number and flow rate ratio [17].  
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Figure 2.5: Illustration of the different droplet formation regime. (a)Squeezing regime, 

(b) thread formation, (c) dripping and (d) jetting[17]. 

 

 

 

Figure 2.6: Different droplet formation regimes with respect to the flow rate ratio and 

capillary number[17]. 

 

In the absence of surfactants and the formation of viscous droplets, Cubaud et al 

also observed similar droplet formation regimes occurring at different capillary 

numbers. He observed additional modes of droplet breakup such as threading, 

tubing and viscous displacement. A flow map illustrating the different droplet 

formation regimes at different capillary numbers is also presented [78]. 



22 
 

2.3 Active droplet generation 

 

2.3.1 Different methods of control 

 

Different methods to actively control the size of the droplets formed in microfluidic 

devices have been developed in the past decade. With the increase in complexity in 

lab-on-a-chip applications, these active methods provide robust solutions to meet the 

raising demands. The size of the generated droplets can be manipulated using 

different means such as pneumatic control [35-37, 82], piezoelectric actuation [38, 

50], surface acoustic wave [51, 52], light sensitive surfactants [53], magnetic control 

[39-41], thermo-capillary manipulation [30-34, 39, 83] and electro-capillary 

manipulation [42-49].  

In the above, electrically mediated droplet generation is one of the most robust, 

reliable and dynamic method to control the size or frequency of the droplet formed.  

It offers several distinct advantages over other systems. For example, in pneumatic 

assisted droplet formation, the long term reliability and performance may be a 

concern as the “stretching” of PDMS may deteriorate with repeated usage. In such a 

device, the sizes of the droplets formed are often manipulated by deforming the 

interface between the fluids through “stretching” of the PDMS material. This is often 

achieved by using an integrated valve or wall actuated by a pressurized air source. 

The size of the droplets formed in such cases depends on the applied pressure and 

also the control signal applied. The responsive time of such a system is also 

relatively longer than the electrical methods. 

Electrically mediated droplet generations also appeals to chemical and biological 

applications which are both temperature and contaminant sensitive. For example in 

magnetically assist droplet formation, often the use of magnetic responsive fluids 

such as ferrofluid may contaminate the biological or chemical reagent which interfere 

the reaction process. Thermo-capillary mediated droplet generation is also not 

suitable for temperature sensitive applications such as the polymerase chain 

reaction (PCR) which is used to duplicate genetic materials [84, 85] .  
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On the hindsight, the current electrical methods proposed also have its limitations 

and disadvantages. Electrical control in droplet microfluidics was first proposed by 

Link et al in 2006 [48]. He uses the concept of electrostatic charging of the aqueous 

fluid to generate electrical forces to assist the droplet formation. This is achieved by 

integrating indium tin oxide (ITO) electrodes between the junctions of droplet 

formation. The size of droplets generated decreases with the increase in applied DC 

voltage. However, this method has several drawbacks. Firstly, the contact of the 

electrodes with the fluids results in electrolysis at high voltages. As a result, bubbles 

are formed during the electrochemical process which destabilized the production of 

monodispered droplets. Figure 2.7 illustrate the formation of bubbles observed when 

similar experiments were repeated during the doctorate tenure. 

 

ITO Electrodes

ITO Electrodes

Qd

Qc Qc

ITO ITO

Bubbles

(a) (b)

 

 

Figure 2.7: Formation of bubbles due to electroylsis. (a) Schematic sketch of the 

microfluidic device geometry with the electrodes and (b) formation of bubbles at 

1000V. The L shape electrodes provide the connection to the voltage source. Qc and 

Qd refers to the volumetric flow rate of the continuous and dispersed phase fluid.  
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The charging of the aqueous fluid also results in the production of highly charged 

droplets. The droplets may undergo further columbic reactions after the production 

which results in droplets of high dispersion. Another drawback of such method 

includes the need of alignment of the ITO electrodes with respect to the microfluidic 

channels. This problem is eliminated in the subsequent work by Kim et al [47] with 

the insertion of electrodes at a fixed location within the microfluidic channels. 

However, the problem of electrolysis at high voltages may persist as the electrodes 

are in contact with the aqueous fluid. 

Electrowetting on dielectric (EWOD) is another approach developed by Mugele et al 

to manipulate the generation of droplets in microfluidic devices. The difference 

between electrowetting (EW) and EWOD is the addition of a dielectric layer which 

allows the use of higher voltages due to the insulation provided. In this approach, 

either an AC or DC voltage can be used to tune the apparent contact angle of the 

aqueous fluid with the channel walls. The size of the droplets produce depends on 

the dimensionless EW number and the EW equation which are describe in equation 

(2.1) and (2.2) below. 

 

Electrowetting equation:  

 cos cos Y      (2.1) 

    

Where θ is the water contact angle, η is the dimensionless EW number and θY is the 

young angle. 

 

Dimensionless EW number: 

 

2

2

CU



   (2.2) 
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Where C capacitance due to the dielectric layer, U is applied voltage and σ is the 

interfacial tension between the fluids. 

 

Although the physics and mechanisms governing EW or EWOD is well described 

and explained in various works [42-45], this method of control requires exquisite 

fabrication technique of the dielectric layer. The dielectric layer which is in the order 

of a few micrometers is often hard to control as it is fabricated by dip coating process.  

 

2.4 Demonstration of concept 

 

2.4.1 Motivation and aims 

 

As mentioned, the use of electric field provides the most robust, dynamic and reliable 

means of control in generation of droplets in microfluidic devices. Although several 

electrical methods have been proposed previously, a reliable method with simple 

fabrication technique is still not available. This impedes the use and implementation 

of electrical control elements for application based processes. Hence, the motivation 

for this thesis is to develop a reliable method of electrical control which is relatively 

simple to fabricate and also easy to implement. A secondary motivation factor for this 

work will be the use of electrodes which are not in contact with the fluids to eliminate 

the problem of electrolysis. 

The aims of this research is focus primary on the use of an AC voltage induced 

electric field to control the size or frequency of the droplets formed. Unlike the DC 

voltage counterpart who is widely investigated, the use of an AC voltage induced 

electric field to control the size of the droplets is still poorly understood. This work 

also aims to explain different observed complex phenomenon with simple physical 

scaling laws such as the capillary number and electrical bond number. 

The work coupled the flow focusing geometry with the use of an AC voltage induced 

electric field. This coupling inherently provides the advantages of both system and 
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thus providing a versatile platform of electrical control in droplet generation in 

microfluidic devices. 

 

2.4.2 Material and methods 

 

The material used in this study is mainly PDMS microfluidic devices fabricated via 

soft-lithography [67, 68]. The devices are flushed with Aquapel solutions to ensure 

uniform wetting properties throughout the channels. The channels remain 

hydrophobic after the surface treatment. The electrodes are fabricated by melting 

indium solid solder wire (Indalloy 19, GPS Technologies GmbH) into the patterned 

microchannels [86]. In this way, the shape and locations of the electrodes are fixed 

and no alignments are needed. The wire melts at about 60°C and can be inserted 

easily when the microfluidic devices are placed on a hotplate. Figure 2.8 shows the 

schematic sketch of the device. 

 

Indium Tin oxide (ITO) Coating

Glass Plate

PolyDiMethylSiloxane (PDMS) Device

Electrical Wire

Tubings
Microchannel

Electrodes

Ultraviolet Glue

 

 

Figure 2.8: Schematic sketch of the microfluidic device. The electrical wires connect 

the electrodes to the power source and ground. The ultraviolet (UV) glue (3526, 

Loctite) holds the wires in place to ensure contact with the electrodes at all times. 

The ITO (CG-60IN-S215, Delta Technologies) acts as an additional electrode which 

is used mainly to ground the system to prevent stray voltages at the bottom of the 

device. The wires used are color coded where red represent a connection to the 

power source and black represent a connection to the ground. 
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A flow focusing geometry with and without the orifice (Figure 2.9 and 2.10) is used to 

investigate the dependence of the size of the droplet produced with an applied AC 

voltage. Water-in-oil (W/O) droplets are first produced by flowing milli-Q water in the 

middle of the channel as the dispersed phase fluid. Mineral oil (M5904, Sigma 

Aldrich) with 5% wt/wt of non-ionic surfactant (SPAN 80, Sigma Aldrich) flows in the 

two side channels as the continuous phase fluid.  

 

~

60µm

60µm

Qc Qc

QDAC ~AC ~AC ~AC
(a) (b)

 

 

Figure 2.9: Flow focusing device with straight channels. (a) Schematic sketch and (b) 

Picture of droplets produced in the channels. The depth of the channel is about 

35μm. The separation distance between the top and bottom pair of electrodes is 

about 100μm. 

60µm

60µm

Qc Qc

QD
~AC ~AC ~AC ~AC

(a)(a)

(b)

 

 

Figure 2.9: Flow focusing device with a 20μm orifice. (a) Schematic sketch and (b) 

Picture of droplets produced in the channels. The dimensions and height are the 

same as above. 
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A function generator (33210A, Agilent) is used to generate sinusoidal signals at 

various voltages and frequencies. This signal is then amplified using a high voltage 

power amplifier (623B, Trek). An oscilloscope is also connected to the output of the 

amplifier to measure the resulting amplified signal. Figure 2.11 illustrates the 

experimental setup.  

 

    

 

Figure 2.11: Experimental setup illustrating the equipment used in the investigation. 

 

In order to quantify the effect of the AC voltage induced electric field, stable 

production of W/O droplets are first formed at fixed volumetric flow rates using 

syringe pumps (neMESYS, Cetoni). The applied AC voltages at different frequencies 

and applied volumetric flow rates are then varied systematically. Videos of each 

variation are captured and analyzed using an automated customized software 

(Matlab, Mathworks) to measure the diameters of the droplets. In the software, the 

droplet interfaces are detected and the resulting areas are obtained by filling up the 

interfaces. The diameters of the droplets are calculated by approximating the area as 

a cylindrical shape. The software also calculates various other parameters such as 

the droplet formation frequency and droplet velocity.  
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2.4.3 Influence of applied voltage 

 

The experiments were carried out by increasing the applied voltage from 0 V to 

about 1 kV at fixed intervals. The sinusoidal signal is fixed at a frequency of about 50 

kHz. The top pair of electrodes is applied with the AC voltage and the bottom pair of 

electrodes is grounded together with the ITO glass. The two cases of with and 

without an orifice are tested with three different sets of flow rates. The flow rate ratio 

φ (Qc/Qd) is fixed at ten for a qualitative comparison. 
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Figure 2.12: Influence of applied voltages at a fixed frequency of 50 kHz. Three sets 

of flow rates are tested. The solid symbols represent results for the case of a straight 

channel. The open symbols represent results for the case with an orifice of 20 μm. 

Both channel widths are 60 μm and channel height of about 35 μm. The volumetric 

flow rates and ratio are fixed for both cases for comparison.  
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Geometry A: Straight channel Geometry B: 20µm orifice

0V 1020V
0V 1020V

Q :Q :Q (µl/hr)= 150:30:150 for both cases.C D C

- -  

Figure 2.13: Snapshots of droplets formed at different applied voltage. (a) Straight 

channel and (b) with a 20 μm orifice. The snapshots are taken with different 

objectives of different magnification. 

 

Indeed, the electric field induced by the AC voltage results in a change in the size of 

the W/O droplets formed in both geometry as displayed in figure 2.12 and 2.13. In 

the case of the straight channel, the diameter of the droplets decreases for all the 

three sets of given flow rates. In the case of with the orifice, the diameter of the 

droplets increases slightly for all the three sets of given flow rates. In both cases, the 

droplets first formed in the dripping regime and give way to the jetting regime at 

about 600 Vpp.  

 

2.4.4 Influence of applied frequency 

 

In the following, we fixed the volumetric flow rate at Qd=20μl/hr and Qc=100μl/hr for 

each side of the continuous phase inlet. Similar experimental tests with voltage 

variations similar as the previous are carried out. However, the sinusoidal signal 
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frequencies are varied between 50 to 10 kHz to investigate the influence of the 

applied frequencies.  Figure 2.14 shows the experimental results obtained. 
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Figure 2.14: Influence of applied frequencies. The solid symbols represent results for 

the case of a straight channel. The open symbols represent results for the case with 

an orifice of 20 μm. 

 

Experimental results obtained at different applied frequencies show negligible 

differences in the measured droplet diameters when the applied voltage increases 

from 0 to about 1 kV for both cases. This is because the applied frequencies are 

much higher than the droplet production frequency. The droplet formation 

frequencies is in the order of a few hundreds hertz while the frequencies of the signal 

is at a factor of at least 100 times higher. Moreover, the interplay between 

conductivity of the fluid and the applied frequencies are not investigated. Only the 

case with milli-pore water used as the dispersed phase fluid is tested. More detailed 

experimental investigations with fluids of different conductivities at different applied 

frequencies are needed to elucidate the behavior. 
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2.5 Discussion 

 

2.5.1 Geometrical alteration 

 

Geometrical factors plays an important role in controlling the formation of 

monodispersed droplets in microfluidic devices [87]. Hence in order to exploit the 

observed phenomenon, several alterations to the current designs are needed. The 

first geometrical alteration is the increase of the width of the microfluidic channels 

from the initial 60 μm to 100 μm. The channel height is kept constant at 35 μm to 

allow a systematic system. This is because the channel width scales with diameter of 

the droplets generated [75]. A larger channel width will in turn allow the generation of 

larger droplets for subsequent electrical manipulation. In the previous experiments, 

we observed a change in the diameters of droplets formed with the application of an 

AC voltage induced electric field. This change is relative to the applied voltage. 

However, we only observed about a maximum of 30% change in the diameter of the 

droplets at the maximum applied voltage of about 1 kV. The measured diameters at 

0 V is about 51 μm and at 1 kV is 35 μm (figure 2.12). Although in terms of volume of 

the droplets, this change is amplified as the diameters of the droplets scales with 

volume by a cubic factor.  However, we anticipate a larger change in the diameter of 

the droplets when the width of the channel is increased. 

The design of the electrodes also affects the stability of the generated droplets. This 

was evident in the formation of liquids jets which sometimes tends to be attracted to 

the “sharp” edges located at the downstream channel (Figure 2.15). In order to 

circumvent this, the designs of the electrodes are amended. The new designs will 

improve the stability of the jets as the elimination of sharp edges reduces the electric 

field gradient. The separation of the electrodes with respect to the fluidic channel will 

also be increase from 20 μm to about 35 μm. This is to reduce and eliminate the 

problem of the cracks as shown in figure 2.15. The PMDS wall separating the 

electrodes with the fluidic channels acts as an insulation. The current design often 

results in a low yield during fabrication as the liquid metal tends to break into the 

“thin” walls. The improvement will allow an anticipated increase in the overall 

reliability of the system. 



33 
 

 

 

 

 

 

 

Figure 2.15: Snapshots of the current problems. (a) Attraction to the sharp edges of 

the electrodes and (b) showing the microcracks. 

 

Figure 2.16 illustrate the simplified new designs which will be used in the next 

section of the study. In brief, the electrodes are redesigned to resemble a “L” shape 

and the channel widths are increased to about 100 μm. 

 

 

  

Figure 2.16: Schematic sketch of the simplified design. The channel width is 

increased to 100 μm and the shapes of the electrodes are change to “L” shape. 

Attraction to the 

sharp edges 
Crack(a) (b) 
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2.5.2 Other factors to be considered 

 

The current experimental works served only as a conceptual demonstration. A 

systematic study on various different parameters is needed to understand and 

explain the observed phenomenon. Physical scaling laws and dimensionless 

numbers should be developed, calculated and analyze. Beside the applied 

volumetric flow rates and applied frequencies, other factors should also be 

considered. For example, the interplay between conductivities of the fluids and the 

applied frequencies are important electrical parameters for consideration. Figure 

2.17 illustrates importance when the conductivity of the fluid is increased by adding 

small amount of sodium chloride (NaCl, Sigma Aldrich) salt into the milli-Q water. 

Unstable droplet production is observed when the applied AC voltage is above 600 

Vpp.  
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Figure 2.17: Comparison between droplets formed with and without salt. The 

volumetric flow rates are fixed for both cases. The applied frequencies are also fixed 

at 50 kHz.  
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The geometrical configurations of the electrodes also play an important role in the 

interaction between the induced electric field and the fluid dynamics of droplet 

formation. In retrospect, the way the electrodes are connected determined the 

direction of the electric field which in turn affects the droplet formation mechanism. 

This will need to be studied carefully in the subsequent chapter. 

  

2.6 Conclusion 

 

Electroactuation at a microfluidic flow focusing junction offers a new technology to 

actively control the size of the droplets formed in microfluidic devices [88]. The 

patented method distinguishes itself from existing electrical control with the use of an 

AC voltage induced electric field. This method allows the electrodes to be fabricated 

at ease and also eliminates the need for vexatious alignments. An AC voltage 

induced electric field is exploited within the junction of droplet formation in a flow 

focusing configuration. The size of the droplet formed changes with the increase in 

applied voltage. At different applied frequencies of between 50 to 10 kHz, no 

significant differences are observed in the measured droplet diameters. 

Although useful for practical applications, a detailed understanding of the 

phenomenon requires a simplification of the geometrical parameters of the 

microfluidic device. In the following, we will show our analysis of the physics of the 

electroactuation on a simplified geometry.  
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Chapter 3: Microfluidic flow-focusing in ac electric fields 

 

3.1 Introduction 

 

The very first step in a typical droplet-based microfluidic experiments involves the 

generation of droplets for encapsulation related applications [1, 4, 7, 90-92]. In such 

applications, it is vital to control the size of the droplets as described in the previous 

chapters. In this chapter, we will study systematically the proposed method on using 

an AC voltage induced electric field to form droplets in a microfluidic flow focusing 

geometry. The electric field is applied directly at the flow focusing junction where 

water-in-oil (W/O) droplets are formed. Various experiments with different 

parameters are tested to understand the complex phenomenon. Both the electrical 

and electrohydrodynamic models are proposed and discussed. 

 

3.2 Systems 

 

The proposed emulsification system and quantification method are as per described 

in the previous chapter. Geometrical alterations to both the channel widths and 

electrodes geometry are made to improve the reliability and stability of the system. 

Various characterization tests are also done to ensure the consistency of the results.  

 

3.2.1 Stability of droplet generations 

 

The ability to generate droplets of uniform size is of upmost importance in many 

droplet-based applications [26]. Droplet microfluidics offers a promising route to 

achieve this requirement due to the precise control of fluid motions in micrometer 

length scale and laminar flow behavior. The polydispersity in the droplets formed is 

often in the order of 5% or less. This is relatively small as compared to different bulk 

emulsification methods. Several factors that contribute to this are the properties of 
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the fabricating material, fluctuation of the syringe pumps and the presence of 

contaminants. For example, PDMS has poor solvent compatibilities and tends to 

swell if an inappropriate fluid is used [93]. This will result in huge lateral dimensional 

changes which may affect the accuracy in droplet generation. Fluctuations induced 

by the stepper motors in syringe pumps create a pulsating effect which is obvious at 

low flow rates [94]. Although the use of servo-motor driven syringe pumps 

(neMESYS, Cetoni) reduces the pulsation significantly, small deviations are still 

inherent in the system. Last but not least, the presence of contaminants affects the 

interfacial tension between the fluids. In micro-scale, this difference may be amplified 

due to the importance of Laplace pressure. 

Here we first access the stability and reliability of our system through careful 

experimental works with the passive system. With a view of quantifying the above, 

experimental works are devise and carried out. A total of 8 different PDMS 

microfluidic devices are fabricated using 4 different identical silicon molds. The 

channel depth is about 35 μm and the widths of inlets are about 100 μm for all 

microfluidic devices. Mineral oil (M5904, Sigma Aldrich) with 5% wt/wt of non-ionic 

surfactant (SPAN 80, Sigma Aldrich) acts as the continuous phase fluid. Milli-Q 

water with and without sodium chloride salt act as the dispersed phase fluid in 

separate experiments.  W/O droplets are formed using fixed volumetric flow rate of 

Qd = 50μl/hr and Qc = 400μl/hr. After the droplet formation is stabilized, videos of the 

generated droplets are captured at regular intervals of about 10 minutes 

continuously for an hour. For each interval, the diameters of about 100 droplets are 

measured and analyze. 

Experimental results show slight variances in the diameters of the droplets (Figure 

3.1) over the period of an hour. The average diameter of the droplets obtained is 

about 82.6 μm with a standard deviation of about 1.52 μm. This corresponds to a 

coefficient of variance (CV) of about 1.8%. Interestingly, the diameters of the 

droplets do not vary significantly with the addition of NaCl salt. Although slight 

differences are observed in the value of interfacial tension, the minute amount of 

solute dissolved in the solvent does not affect significantly on the diameters of 

droplets. This result is useful as it allows a comparison between the different cases 

in investigating the influence of the conductivities of the dispersed phase fluid.   
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Figure 3.1: Diameters of droplets at different time intervals in a period of 1hour. D1-4 

represents the cases of using only milli-Q water. D5-8 represents the cases of using 

0.15% wt/wt of NaCl salt in water.  

 

3.2.2 High voltage power amplifier 

 

A high voltage power amplifier (623b, Trek) is used to amplify the input signal 

generated by the function generator. This amplification allows the generation of 

electric field strengths which are in the order of Megavolt per meter (MV/m). This is 

due to the small separation between the electrodes which is about 170 μm. However 

in such amplifiers, the amplification factor or gain is dependent on the performance 

and the electronic designs of the system. The performance may also deteriorate with 

time due to aging issue. Limitation or constraints in the bandwidth will also affect the 

gain at different applied frequencies. Figure 3.2 and 3.3 shows the characterization 

of the high voltage power amplifier. 
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Figure 3.2: Characterization of the amplifier at different applied frequencies. A 

sinusoidal signal is used for all the cases above.
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Figure 3.3: Characterization at a fixed frequency. Each symbol represent the dates 

that reading is taken in the format of DDMMYYY. 
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Characterization results show that the gain is dependent on the applied frequencies 

and changes slightly with aging. Above 10 kHz, the gain is less than the specified 

ratio of 1000. At a fixed applied frequency of 50 kHz, the amplification also changes 

slightly with aging. Hence, in order to compensate the difference and to ensure that 

the applied AC voltage is consistent, an oscilloscope is coupled to the output of the 

amplifier. Meticulous checks on the oscilloscope are made to ensure consistency in 

the applied voltages during the experiments. 

 

3.2.3 Electrodes configurations 

 

The configuration of the electrodes determines the direction of the electric field and 

how it interacts with the fluids. In the current design, due to the presence of five 

different electrodes (two in the upstream, two in the downstream and the ITO layer at 

the bottom of the glass), this results in 32 different electrodes configurations. 

However, due to the symmetry of the flow focusing geometry, the electrodes have to 

work in pairs. This reduces the number of configurations by half to 16 different 

configurations. Experimental trials also show that the system demonstrate the same 

characteristic when the electrode system is in perfect symmetry. This again reduces 

the combination by half to 8 different configurations. The two extreme cases where 

either all the electrodes are applied with or without the AC voltage result in an open 

circuit which does not generate any electric field. This further reduces the number of 

configurations to 6 which will be tested in the next section. For simplicity, the table 

below represents the 6 different configurations which will be investigated in the next 

section. 

 

6 different configurations 

 1: A 2: A’ 3: B 4: B’ 5: C 6: C’ 

Upstream AC       G G AC AC G 

Downstream G AC AC G AC G 

ITO G AC G AC G AC 
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Table 3.1: Different possible configurations of connecting the electrodes. AC refers 

to applying an AC voltage. G refers to the grounding of the electrodes. Upstream 

refers to the top pair of electrodes, downstream refers to the bottom pair and ITO 

refers to the conductive oxide layer at the bottom of the glass. A’ is the 

configurations where it is the complement of A. 

  

3.2.4 Interfacial tension measurements 

 

The interfacial tension measurements are carried out using a standard pendent drop 

method tensiometer (PAT-1M, SINTERFACE). The interfacial tension is measured 

by fitting the profile of the shape of the droplet to the Young-Laplace equation. In 

order to obtain accurate measurements in such method, several factors have to 

noted and considered. Firstly, the measured droplets have to be sufficiently distorted 

by gravity. This is because interfacial tension is measured by balancing the restoring 

force of interfacial tension with the gravitation pull due to the weight of the droplet. 

Several trials and errors have to done before the measurements to determine the 

optimum size of the droplets that the capillary can withstand. The “wetting” of the 

metal capillary tube with the fluids will also result in inaccuracy in the measurement. 

Hence, careful checks and cleaning are made to eliminate the “wetting” effect due to 

the capillary. Last but not least, the presence of contaminants will also reduce the 

accuracy of the measurements. To circumvent this, the system is clean and flush 

several times with ethanol, isopropyl alcohol (IPA) and milli-Q water. 

Figure 3.4 to 3.6 depicts the interfacial tension measurements results obtained for 

various fluid systems. In the measurements, the diameter of the capillary tube is 2 

mm. The densities for the mineral oil and milli-Q water are fixed at 0.84 g/cm3 and 

0.998 g/cm3 respectively. It is also assumed that the density of both the mineral oil 

and milli-Q water does not change significantly with addition of small amount of Span 

80 surfactant and salts.  
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Figure 3.4: Interfacial tension measurement for 5% wt/wt of span 80 in mineral oil 

with milli-Q water. The insets are the snapshots taken at the start and end of the 

measurements. The measurements are taken over a period of more than 15 hours. 
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Figure 3.5: Interfacial tension measurements for different concentrations of Span 80. 
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Figure 3.6: Interfacial tension measurements of 5% wt/wt of span 80 in mineral oil 

with different aqueous solutions.  

 

The interfacial tension measurement characterization reveals several interesting 

characteristics of the fluid system. For the case of milli-Q water with 5% wt/wt of 

span 80 in mineral oil, the initial interfacial tension is about 5 mN/m. At equilibrium, 

the interfacial tension is about 3.5 mN/m after a period of more than 15 hours of 

measurements. This result suggests that the absorption kinetics of Span 80 in water 

is very rapid at the start but it takes a much longer time to reaches equilibrium 

(Figure 3.4). Figure 3.5 shows the interfacial tension measurements with various 

concentrations of Span 80 in mineral oil. The result shows that the critical micelle 

concentration (CMC) is about 0.005% wt/wt. In the case of without the addition of 

surfactant, the interfacial tension between de-ionized water and pure mineral oil is 

about 60 mN/m. This result also shows that the addition of a small amount of span 

80 (0.000005% wt/wt) will reduce the equilibrium interfacial tension drastically to 

about 33 mN/m. Figure 3.6 shows the comparison of using different aqueous 

solutions by adding in small amount of contaminants into milli-Q water such as NaCl 
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salt (1.5% wt/wt)  and fluorescence (10μM). The result shows little changes to the 

equilibrium interfacial tension for the cases tested.  

It is also noted that the above measurements may not be an accurate reflection of 

the true interfacial tension in a microfluidic flow focusing device. This is because of 

the difference in both the characteristic time scale and volume of the droplets. The 

typical volume of the droplets formed in the microfluidic flow focusing device is in the 

order of picolitres but the volume of the droplet measured using the pendent drop is 

in the range of microliters. The droplet formation frequencies in the microfluidic flow 

focusing device is in the range of milli-seconds or faster but the pendent drop 

measures the absorption for a number of hours. However, recent studies reveal that 

the adsorption kinetics of surfactants is much faster in microfluidic devices when 

compared to the pendent drop measurements [95]. Hence, the measurements above 

serve as a good reference for the approximation of the interfacial tension. It is also 

noted that the absorption kinetics of the surfactants is not within the scope of this 

study. A detailed explanation of the absorption kinetics of surfactant can be found in 

this review paper [96].  

 

3.3 Experimental results 

 

3.3.1 Influence of flow rates 

 

The influence of different volumetric flow rates at different AC voltages is first 

investigated by using a sinusoidal signal at a fixed frequency of 50 kHz. Electrodes 

in the upstream are applied the AC voltage while the bottom pair and the ITO glass 

are grounded unless stated otherwise (configuration A). Water-in-oil droplets are 

generated at fixed volumetric flow rates and flow rate ratio. The dispersed phase 

fluid is milli-Q water and the continuous phase fluid is mineral oil with 5% wt/wt of 

span 80 as mentioned in the previous section. The conductivity of the milli-pore 

water is about 0.3 μS/cm. After the droplet generations have stabilized, the applied 

AC voltage is increase systematically from 0 V to about 1000 V at fixed voltage 

intervals.  Videos for each point are then captured and analyzed by measuring at 
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least 100 droplets for each point using an automatic image analysis system (Matlab, 

Mathworks).   
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Figure 3.7: Influences of applied AC voltage at different flow rates. A sinusoidal 

signal of 50 KHz is used here. 

 

Experimental observations show that the diameters of the droplets decreases when 

the applied AC voltage increases. The decrease in the size of the droplets is 

accompanied by a change in the droplet formation regime. At low flow rates, the 

droplets are formed either in the squeezing or dripping regime in the absence of the 

electric field. Between 600 to 700 Vpp, the droplet formation transit to the jetting 

regime. However for the case when the droplets are formed in the jetting regime (Qc: 

Qd: Qc = 1000:250:1000 μl/hr), the applied AC voltage does not change significantly 

the diameters of the droplets. In such a situation, the length of the jet increases 

dramatically instead with the applied voltages. Figure 3.8 and 3.9 shows the 

snapshots of the images taken at different flow rates and applied AC voltages.  
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Figure 3.8: Snapshots of the droplets formed at different flow rates and applied AC voltages.
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Figure 3.9: (a) Snapshots illustrating the increase in the length of the jet with no significant changes in the size of the droplets and 

(b) length of the jet as a function of applied voltage. 
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3.3.2 Influence of the conductivities of the dispersed phase fluid 

 

Next, we investigate the influence of the conductivities of the dispersed phase fluid 

with the increase in the applied AC voltage. The electrodes configurations and signal 

frequency are the same as described in the previous section. A fixed volumetric flow 

rate of Qc: Qd: Qc = 200:50:200 μl/hr was used to generate droplets. The 

conductivities of the dispersed phase fluid are varied by six orders of magnitude with 

the addition of small amount of sodium chloride salts. The experimental results are 

evaluated and shown in figure 3.10. 
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Figure 3.10: Influence of the conductivities of the dispersed phase fluid with the 

applied AC voltage. The black symbol corresponds to the case of using only milli-Q 

water without the addition of any sodium chloride. 
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Experimental results reveal several interesting observations. In the absence of the 

electric field (At V=0), the size of the droplets are similar with only slight variations 

observed in the diameters. This difference can be attributed to the slight difference in 

the equilibrium interfacial tension measured previously. Second, when the 

conductivities of the dispersed phase fluid is increased by 2 order of magnitudes 

(from about 0.3 μS/cm to about 30 μS/cm), no significant differences are observed 

when the applied AC voltage increases. However, when the conductivity is about 

300 μS/cm, unstable droplet formations are observed beyond the applied voltage of 

about 700 Vpp. The droplets formed in this case resembled the unstable “whipping” 

behavior observed in some electrospraying experiments [97]. Last but not least, 

when the conductivities of the dispersed phase fluid is increased further to about 

3000 μS/cm and higher, the diameters of the droplets formed shows only a slight 

variation despite increasing the voltage to about 1000 Vpp. No changes in the droplet 

formation regime are observed for both cases. This result clearly shows a strong 

dependence on the conductivities of the dispersed phase fluid with the applied AC 

voltage and will be discussed in the later section. 

 

3.3.3 Ionic properties  

 

The ionic properties of aqueous solutions are also tested to ascertain the importance 

of conductivities of the dispersed phase fluid with the applied AC voltage. Aqueous 

fluids of both sodium chloride (NaCl) and hydrogen chloride (HCl) with similar 

conductivities are prepared and tested. The electrodes configuration, signal 

frequency, continuous phase fluids and volumetric flow rates are the same as 

described previously. The same experimental procedure is performed and the results 

are quantified as per described in the above. Experimental results shows negligible 

differences between the two aqueous solutions when the applied AC voltage 

increases from 0 to about 1000 Vpp. Similar observations are seen as describe 

previously. This result also eliminates the need to consider the chemical composition 

of the aqueous solutions and shows that the conductivity of the fluid is the physical 

quantities governing the change in the size of the droplets formed.  
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Figure 3.11: Comparison between aqueous solutions of NaCl and HCl. The symbols 

in solid represent the cases for NaCl solutions. The symbols in open represent the 

cases for HCl solutions. The shapes represent the different magnitudes of 

conductivities. A fixed volumetric flow rate of Qc: Qd: Qc = 200:50:200 μl/hr is used. 

 

3.3.4 Coupling of frequencies and conductivities 

 

The coupling of both the applied frequencies and conductivities are investigated by 

varying both the parameters in separate experiments. The electrodes configuration, 

continuous phase fluid and the volumetric flow rates are as the same as per 

described previously. Milli-Q water is first tested as the dispersed phase fluid and 

then replaced by aqueous NaCl solution of conductivity of about 300 μS/cm. The 

applied frequencies are varied between 50 to 5 kHz and the applied AC voltage is 

increased from 0 to about 1000 Vpp. Figure 3.12 depicts the effect of applied AC 

voltages for different frequencies for both the tested fluids with different 

conductivities. 
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Figure 3.12: Influences of applied frequencies at different AC voltages for solutions 

with different conductivities. The symbols in black represent the case for milli-Q 

water and the red symbols represent the case for aqueous NaCl solution of 

conductivity of about 300 μS/cm which is about 1000 times higher. The volumetric 

flow rates are fixed in all the cases at Qc: Qd: Qc = 200:50:200 μl/hr. 

 

For the case of using milli-Q water as the dispersed phase fluids, no significant 

differences are observed when the applied frequencies are varied between 50 to 10 

kHz and when the voltage is increased from 0 to 1000 Vpp. This result agrees well 

with the previous case depicted in chapter 2. However, when the applied frequency 

reduces to 5 kHz, unstable droplet formations are observed for voltages beyond 700 

Vpp. For the case of using aqueous NaCl solution as the dispersed phase fluids, the 

reduction in the size of the droplets decreases with the decrease in applied 

frequencies. This result suggested that the interplay between the applied frequencies 

and conductivities of the dispersed fluids plays a role in determining the change in 

the size of the droplets with the increase in applied voltage. This will be discussed 

further in the next section. 
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3.3.5 Configuration of the electrodes 

 

The configurations of the electrodes determine the direction of the electric field and 

how the electric field interacts with the fluids. As mentioned previously, a total of 6 

different electrodes combinations are considered in this study. In the first case (A), 

an AC voltage is applied to the upstream pair of electrodes while the downstream 

pair of electrodes and the ITO are grounded. The second case (B), is when the 

downstream pair of electrodes are applied with an AC voltage while the upstream 

pair and the ITO are grounded. The third case (C), is when both the upstream and 

downstream pairs of electrodes are applied with an AC voltage while the ITO is 

grounded. The complements of A, B and C refers to cases of the exact opposite in 

the way the AC voltage is applied.  

Experiments for two different set of dispersed phase fluids are conducted for all the 6 

different electrodes combinations mentioned. In the first set, milli-Q water is used as 

the dispersed phase fluid and aqueous NaCl solution of conductivity of about 3000 

μS/cm is used in the second set. Mineral oil with 5% wt/wt of span 80 is used as the 

continuous phase fluid for both sets of dispersed phase fluids. The same volumetric 

flow rates of Qc: Qd: Qc = 200:50:200 μl/hr is used for all the experiments. In all the 

experiments, the applied frequencies are fixed at 50 kHz and the AC voltage is 

increased systematically from 0 to 1000 Vpp. The diameters of the droplets at 

different applied voltages are measured and plotted in figure 3.13 and 3.14. 

Experimental results show similar variations in the diameters of the droplets with the 

applied AC voltage are observed when the electrodes configurations are in perfect 

symmetry. This implies that the electrodes combination in A behaves the same as 

the combination in A’. For the case of using milli-Q water as the dispersed phase 

fluid, negligible changes in the diameters of the droplets are observed when the AC 

voltages increases for both combination C and C’ (figure 3.13). For the case of using 

aqueous NaCl solutions as the dispersed phase fluid, slight differences are observed 

between the complements for set A and C (figure 3.14). These results ascertain the 

importance of the ITO which acts as a third set of electrode and has to be taken into 

account during the modelling of the system. 
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Figure 3.13: Diameters of droplets at different applied voltages in different electrode 

configurations for the case of milli-Q water. 
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Figure 3.14: Diameters of droplets at different applied voltages in different electrode 

configurations for the case of aqueous NaCl solution. 
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3.4 Electrical Modelling  

 

In this section, we first build an electrical model which can be used as a 

representation to describe the system. With the simple model, we will address the 

experimental findings observed in the previous section.  

 

3.4.1 Electrical circuit 

 

The experimental findings presented in section 3.3 are intriguing but interesting. The 

results suggest a strong dependency on both the conductivities of the dispersed 

phase fluids and the applied frequencies of the sinusoidal signal. Here a simplified 

electrical circuit model is presented based on the experimental findings observed 

previously. For simplicity, electrodes in configuration A will be used as the primary 

basis for the modelling and explanations. Figure 3.15 illustrates the schematic sketch 

of system and the equivalent electrical circuit. 

 

 

 

Figure 3.15: Schematic sketch of the microfluidic flow focusing system in 

configuration A. The sectional cuts represent each part used to derive the equivalent 

circuit shown. The electrodes are in black and the aqueous phase fluid in blue. 
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In electrodes configuration A, an AC voltage is applied at the upstream pair of 

electrodes while the downstream pair and the ITO are grounded. In this case, as the 

top pair of electrodes is not in contact with the dispersed phase fluid, the PDMS wall 

which provides the insulation acts as a capacitor Ce as shown in the sectional cut A. 

For one side of the electrode, Ce/2 can be modelled using the parallel plate 

approximation as shown in equation (3.1).   

 

 e/2
e

o r o r

e

A l h
C

d d

  
        

   
  (3.1) 

 

Where ɛo is the vacuum permittivity which is about 8.854 x 10-12 F/m, ɛr is the relative 

permittivity of the material which is about 2.5 for PDMS. Here A is the cross sectional 

area of the electrodes which can be expressed in terms of the length of the 

electrodes le (2200 μm) multiply by the height of the channel h (35 μm) which is 

about 7.7 x 10-8 m2 and de is separation distance between the electrodes and the 

dispersed phase fluid which is 35 μm. This gives an estimated Ce/2 to be about 

0.0487 pF. Taking into account for both sides of the electrodes as they are both 

applied with the AC voltage, Ce is about 0.09735 pF. 

 

The dispersed phase fluid is separated from the ITO glass as shown in the sectional 

cut B. This can also be modelled also using the parallel plate approximation as 

shown in equation (3.2). 
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However in this case, ɛr the relative permittivity of the glass is about 7.75. The cross 

sectional area A here refers to the width of the dispersed phase fluid W multiply by 
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the length L taking into account only the upstream width and length which is 

assumed to provides a more dominant effect due to having a larger area than the 

downstream section. The separation distance dI here refers to the thickness of the 

glass which is about 1 mm. W is about 1000 μm and L is about 11000 μm. Here the 

calculated capacitance is about 0.754 pF. 

 

For the dispersed phase fluid in sectional cut C, the resistance can be estimated by 

using equation (3.3) where we focus on the area of the droplet formation region 

where the channel width and length are smaller than the upstream section (Figure 

3.16). 

 

 

 

Figure 3.16: Schematic sketch of the dispersed fluid used to model the resistance of 

the fluid. 
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Where lf is the length of the fluid, к is the conductivity of the fluid, wf is width of the 

channel at the region of droplet formation and h is the height of the channel. Since lf, 

h 

wf 

lf 
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wf and h are all geometrical factors, l can be used to represent them. Here, l is about 

6.28 x 105 m-1. 

In order to incorporate the frequency term, we take into account the impedance of 

each of the above components and using the voltage divider rule, the electrical 

circuit in figure 3.15 can be simplified as in equation (3.4). 
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Where Utip is the voltage at the tip of the dispersed phase fluid, Uapp is the applied AC 

voltage, Ce is the capacitance of the electrodes, CI is the capacitance of the ITO, f is 

the applied frequency of the signal, к is the conductivity of the dispersed phase fluid 

and l is the geometrical equivalent in (3.3) and j2 = -1. 

 

In the above equation (3.4), it is apparent that the rhs term is a function depending 

on the sole parameter of the f/к since the other terms are geometrical and material 

properties. This parameter changes the Utip depending on the applied frequencies 

and conductivities of the dispersed phase fluid. This agrees well with the 

experimental findings obtained previously where both the applied signal frequencies 

and conductivities of the dispersed phase fluid affect the change in the size of the 

droplets when the applied AC voltage increases. This expression also changes 

slightly depending on the electrode configurations. For the other electrode 

configurations, the same voltage divider rule can be applied to the proposed 

electrical circuits. The potential difference between the Utip and the downstream pair 

of electrodes has to be also considered during the calculation. For example in the 

case of electrode in the configuration A, the potential difference is always equal to 

Utip as the bottom pair of the electrodes is grounded.  
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3.4.2 Model evaluations 

 

In the previous section using electrodes in configuration A, experimental 

investigations on the influences of conductivities of the dispersed phase fluids are 

performed by fixing all the experimental parameters and varying the conductivities by 

five orders of magnitude (Figure 3.10).  Experimental results show that when the 

conductivity is increased to about 2880μS/m and higher, the size of the droplets 

formed does not change much with the increase in the applied AC voltage. No 

changes to the droplet formation regime are also observed. Here we use the 

proposed electrical model and correlation ship of the Utip/Uapp to explain the findings. 

Calculations based on the equation (3.4) are done to verify the accuracy of the 

models. Figure 3.17 shows calculated Utip for each concentration of conductivity. 

0 200 400 600 800 1000 1200

30

40

50

60

70

80

90

(U
tipp

=0.987U
app

)

(U
tipp

=0.937U
app

)

(U
tipp

=0.862U
app

)

(U
tipp

=0.425U
app

)

(U
tipp

=0.164U
app

)

(U
tipp

=0.119U
app

)

 

 

 C = 0.316S/cm 

 C = 3.108S/cm

 C = 29.03S/cm

 C = 307S/cm

 C = 2880S/cm

 C = 28700S/cm

D
ia

m
e

te
r 

o
f 
d

ro
p

le
ts

 (

m

)

Voltage (V
pp

)

 

Figure 3.17: Calculations of Utipp for each level of conductivity. Each color represents 

the calculated value for each symbol. The applied signal frequency is fixed at 50 kHz. 
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Using the proposed model and equation, the calculated value of Utip can be used to 

explain the observations. Below 29.03 μS/m, Utip is near to 1. Hence, slight 

differences are observed. For conductivities of 2880 μS/m and higher, the Utip 

decreases drastically to only about 16% of the Uapp. Hence, the size of the droplet 

does not change much when the voltage increases. However, the proposed model 

and equation does not explain the unstable droplet behavior and difference observed 

for the case when the conductivity is about 307 μS/m.  

In the previous figure 3.12, the influence of applied frequencies at different AC 

voltages for solutions with different conductivities was investigated. Experimental 

observations shows that when the milli-Q water with conductivity of about 0.3 μS/cm 

was used as the dispersed fluid, no significant differences are observed when the 

applied frequencies of the signal is varied from 50 to 5 kHz. When aqueous NaCl 

solution was with conductivity of about 307 μS/cm was used as the dispersed fluid, 

the change in the size of the droplets with the increase in applied AC voltage 

decreases with the decrease in applied frequencies of the signal. Here we used the 

model and equation to calculate Utip as shown in figure 3.18 and 3.19. For the case 

of milli-Q water, the calculations conform to the experimental observations. The Utip ≈ 

Uapp when the frequencies are varied from 50 to 5 kHz. For the case of aqueous 

NaCl solution, the Utip decreases when the applied frequency decreases. At 5 kHz, 

the Utip is only about 16% of Uapp. These calculations agree well with the 

experimental results (figure 3.12). 
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Figure 3.18: Plot of calculated Utip when the applied frequencies of the signal are 

varied from 50 to 5 kHz. This represents the case of using milli-Q water as the 

dispersed phase fluid. 
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Figure 3.19: Plot of calculated Utip when the applied frequencies of the signal are 

varied from 50 to 5 kHz. This represents the case of using aqueous NaCl solution as 

the dispersed phase fluid. 

 

3.4.3 Rescaling of data 

 

The proposed electrical model and correlation ship suggests that the Utip depends on 

the sole parameter of the f/к. Here we rescaled all the previously obtained 

experimental data of various conductivities and applied frequencies by using a 

rescaling factor G. This is done with first using the set of data for using the milli-Q 

water with conductivity of about 0.3 μS/cm and varying the frequencies between 50 

to 5 kHz as a reference. The other sets of data are then shifted to enable the 

collapse to form a master curve. Then we plot the rescaling factor G with f/к in the 

inset for selected cases to determine the relationship of the system.  The rescaling 

plot is depicted in figure 3.20. 
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Figure 3.20: Droplet diameter as a function of the rescaled voltage. Inset: The 

rescaling factor G is plotted as a function of f/к for selected cases. The blue dash line 

is a fit to equation (3.4). The black points are obtained from regime 1 and the red 

points are obtained from regime 3. 

The inset plot obtained above suggested that the system behaviors as a high pass 

filter with a cut-off at around f/к = 4 x 105 m/F. At f/к of about above 106, the rescaling 

factor is about 1 and hence little changes are observed to Utip. However below the 

cut off of f/к = 4 x 105 m/F, the Utip is only about 25% of the Uapp. This rescaling 

agrees well with observed findings in the previous section.  

 

3.4.4 Phase diagrams 

 

In order to further assess our proposed electrical model and equation (3.4), we 

investigate the droplet production mechanism at a fixed applied voltage of 1 kV for 

electrode configurations A, B and C. A fixed volumetric flow rate of Qc: Qd: Qc = 

200:50:200 μl/hr is used for all the experiments. The frequencies of the applied 

signals are varied from 50 to 1 kHz. For electrode configurations B and C, we 

modified slightly the electrical circuits to fit the actual connection system. Figure 3.21 

to 3.23 illustrates the obtained phase diagrams. 
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Figure 3.21: Phase diagram for electrode configuration A at different applied 

frequencies. The applied AC voltage is fixed at 1 kV.  
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Figure 3.22: Phase diagram for electrode configuration B at different applied 

frequencies. The applied AC voltage is fixed at 1 kV. The modified electrical circuit is 

shown above. 
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Figure 3.23: Phase diagram for electrode configuration C at different applied 

frequencies. The applied AC voltage is fixed at 1 kV. The modified electrical circuit is 

shown above. 
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In the above phase diagrams, 3 distinct droplet formations are observed which can 

be classified as regime 1, 2 and 3. In regime 1, it is classified as the stable jetting 

mode where monodispersed droplets are by formed by the classical Rayleigh 

plateau instability. This regime occurs generally at low conductivities and high 

applied frequencies as seen in figure 3.21 and 3.22 for electrode configuration A and 

B. In regime 2, it is classified as the unstable droplet production mode which is 

similar to whipping instabilities observed in the electrospraying experiments [60, 97]. 

This regime occurs in all electrodes configuration A, B and C. However, the 

occurrence differs at different level of conductivities and applied frequencies for each 

electrode configuration. In regime 3, droplets are observed to form via a dripping 

mode. In this mode, the calculated Utip is much lower than the Uapp (about 25% 

according to calculations) which in turns suppressed the magnitude of the electric 

field. This regime only occurs in electrode configuration A and C at different level of 

conductivities and applied frequencies for each electrode configuration.  

In the previous figure 3.20, we observed a cut-off at around f/к = 4 x 105 m/F in the 

inset where the system behave like a high pass filter. Interestingly, the lines 

separating regime 2 and 3 in electrode configuration A also corresponds to the value 

of f/к = 5 x 105 m/F which is close to the cut off condition. The value is obtained by 

calculating the slope of the lines separating the regimes. This observation 

ascertained that the system behaviors as a high pass filter when in the electrode 

configuration A. However, we are still unable to explain the rationale between the 

transitions from regime 1 to 2. 

In order to further assess our proposed electrical models and circuits, we focus now 

on the electrode configuration B. Firstly, regime 1 in this case has disappeared and 

droplets are formed mainly in regime 2 and 3 at different levels of conductivities and 

applied frequencies. According to the electrical circuit, the Utip in this case is always 

equal to 0 while the Uapp at the downstream pair of electrodes is always equal Uapp. 

In this case, the condition for the system to be in regime 3 is never fulfilled and the 

system no longer behaves as a high pass filter. This explains the disappearance of 

regime 3 in this particular electrode configuration. 

In electrode configuration C, the electrical circuit is similar to the one as in electrode 

configuration A where the Utip can be approximated by using the same equation (3.4). 



68 
 

However in this case, as the pair of electrodes in the downstream is also applied with 

the same AC voltage, there is no significant voltage difference between the Utip and 

the downstream pair of electrodes. Hence, this explains the disappearance of regime 

1 where there is a significant voltage difference between Utip and the downstream 

pair of electrodes which is grounded. In this configuration, we also observed a 

transition between regime 2 and 3 at a value of f/к = 5 x 105 m/F which agrees to the 

previous calculations. 

 

3.5 Electrohydrodynamic model 

 

In this section, we propose an electrohydrodynamic model to explain the coupling 

effect of both the electric field and the hydrodynamic flow. We will focus on using the 

proposed model to evaluate the experimental results obtained in figure 3.7. The 

electrodes are in configuration A and volumetric flow rates flow rate ratio is fixed at 8.  

In the absence of the electric field, the diameter of the droplets formed can be 

correlated with the reciprocal of the capillary number [17, 73, 78]. The capillary 

number can be as described in equation (3.5). 

 

 
cV Q

Ca
wh

 

 
    (3.5) 

 

Where η is the dynamic viscosity of the continuous phase fluid, V is the characteristic 

velocity of the fluid and   is the interfacial tension of the fluid. The characteristic 

velocity of the fluid V can be further expressed as the (Qc/wh) where w is the width of 

the continuous phase channel and h is the height of the channel. 

 

In the presence of the electric field, a mechanical effect acts at the interface between 

the fluids as a result of the Maxwell stress. The Maxwell stress is the electrical 
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pressure normal to the interface which acts in the opposition direction to the Laplace 

pressure. This effect can also be expressed in terms of the electric bond by 

comparing the relative weight of the Laplace pressure and the Maxwell stress as 

described in equation (3.6). 
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Where ɛo is the vacuum permittivity which is about 8.854 x 10-12 F/m, ɛr is the relative 

permittivity of the oil which is about 2.1. U is the rms voltage, w is the width of the 

channel and k is a fitting parameter to account for the curvature of the droplet.   is 

the interfacial tension between the fluids and de is the distance of the electrodes to 

the fluidic channel which is 35 μm in this case. The electric bond number in the 

calculations range between 0.2 to about 0.31. 

 

In order to couple both the dimensionless numbers to account for both the 

hydrodynamic and Maxwell stresses, we introduce here the effective capillary 

number which can be described in equation (3.7). 
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Figure 3.24 illustrates the logarithmic plot of the diameters of the droplets against the 

proposed effective capillary number. When the applied voltage is zero, the electric 

bond number will be zero and the correlation reverts back to the pure hydrodynamic 

case. 

 



70 
 

 

 

Figure 3.24: Diameters of the droplets as a function of the effective capillary number. 

The continuous phase volumetric flow rate has been expressed here as the total 

volumetric flow rate of the continuous phase fluid for clarity and comparison. 

 

From the plot, we obtained a power law where the d ∝ Ca-0.4 for the pure 

hydrodynamic case. This deviation from d ∝ Ca--1 is expected as the power law 

depends on various factors such as volumetric flow rate ratio, aspect ratio of the 

channels and viscosity ratio. In our case, the aspect ratio of the channel is about 

2.85 and the viscosity ratio between the two fluids is about 30. Moreover, this model 

account only on the shearing of the fluids during the formation of the droplets [73]. 

Interestingly, when k = 0.5 is used as the fitting parameter, a similar power law of d ∝ 

Caeff
-0.4 is obtained for droplets formed in the dripping regime. For the case when 

droplets are formed in the jetting regime, a power law of d ∝ Caeff
-0.07 is obtained. 

This agrees with the literature where a higher dependence on the capillary number is 

expected when droplets are formed in the dripping regime and a lower dependence 

when in the jetting regime [87]. In the jetting regime, the droplets break up occurs at 
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the downstream of the channel whereas in the dripping regime the droplets break up 

in the upstream channel. 

In figure 3.24, we also observed that the transition between the dripping to the jetting 

regime is not captured by the Caeff number. In the pure hydrodynamic case, the 

transition between the dripping to the jetting regime occurs at about Ca ≈ 1. However, 

for the electrohydrodynamic case, the transitions occur at different Caeff numbers for 

all the tested volumetric flow rates. These transition numbers is also much lower 

than the pure hydrodynamic case. 

 

3.6 Discussion 

 

The proposed electrical and electrohydrodynamic models do not fully explain the 

system and have several limitations. In the electrical modelling of the system, the 

proposed electrical representations for the electrodes in different configurations do 

not explain the transition from the stable jetting to the unstable droplet production 

regime (regime 1 to regime 2). Moreover, several different and distinct instabilities 

can be observed within the proposed single unstable droplet production regime. This 

can be further classified in order to elucidate or isolate the different causes of 

instabilities.  

The effective capillary number does not address or account for the complex nature of 

the interfacial tensions namely the absorption kinetics at the interface of the fluids. 

The model simply assumed that the interfacial tension is at equilibrium while 

neglecting that the dynamic interfacial tension should be the one accounting for the 

size of the droplets during the droplet formation process. While the use of surfactants 

is practical in most applications, this introduces an additional level of complexity 

which should be addressed. Additional experiments without the use of surfactants 

and with different concentration of surfactants will present a more comprehensive 

understanding on the scaling mechanism. 

Last but not least, the models do not address other important dimensionless 

numbers such as the viscosity ratio between the fluids, aspect ratio of the channels 
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and volumetric flow rate of the dispersed phase. Systematic studies on variations to 

these parameters will allow the proposed models to be better characterized and 

understood. 

 

3.7 Conclusion 

 

In conclusion, we developed and characterized an AC voltage induced electric field 

to actively control the size of the droplets formed in a microfluidic flow focusing 

device. Experimental results investigating various parameters are presented and 

discussed with the proposed models. The electrical models address the issue of the 

voltage at the tip of the dispersed phase fluid. The voltage at the tip changes 

depending on the electrode configurations and the ratio of f/к. In the case of 

electrode in configuration A, the system acts as a high-pass filter at a cut off of about 

f/к = 4 x 105 m/F. The electrohydrodynamic model uses the effective capillary 

number to account for both electrical and hydrodynamic effect by taking account the 

effect of hydrodynamic and Maxwell stresses. Different power laws are obtained to 

relate the diameters of the droplet formed in different droplet formation regime. 

However, the model does not take into account the absorption kinetics of the 

surfactants and also the transition between the dripping and the jetting regime.  
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Chapter 4: The Microfluidic Jukebox 

 

4.1 Introduction 

 

In the previous studies, we studied the static properties of the system and investigate 

the influences of various different parameters. We proposed different electric models 

to represent the 3 main electrode configurations. The voltage at the tip can be 

calculated by using the voltage divider rule and taking into account the ratio of the f/к. 

An electrohydrodynamic model was also proposed to account for both the 

hydrodynamic and Maxwell stresses. 

In this chapter, we use electrode configuration A to study the dynamic effect of the 

system through the production of musical sound tracks. The external control 

provided by the AC voltage enables the size and hence the frequencies of the 

droplets generated to be modulated rapidly through mass conservation. Capitalizing 

on this fast control, a transducing method converts the droplet frequencies into 

audible sound tracks.  We also examine the response time of the system and show 

that the fast switching capabilities is suitable for the propose application. Last but not 

least, we present the microfluidic jukebox to play two different musical pieces namely 

“Ode to Joy” and “The flight of the Bumblebee”. 

 

4.2 System 

 

4.2.1 Electrical Control of droplet production 

 

Microfluidic devices which were similar to the previous chapter were used in this 

study. The electrical system is setup to be in configuration A where the top pair of 

the electrodes is applied the AC voltage while the bottom pair and the ITO are 

grounded. A fixed sinusoidal signal of 50 kHz was used in all the experiments. The 

amplification ratio between the applied AC voltage and the final amplified voltage at 

this frequency is about 490 (U = 490 x u). Here, U represents the final amplified 



76 
 

voltage in peak to peak and u is the peak to peak voltage produce by the signal 

generator. 

 

4.2.2 Emulsification system 

 

Water-in-oil (W/O) droplets are produced by flowing milli-Q water mixed with 10 μM 

of fluorescein as the dispersed phase fluid (Qd) in the middle of the channel. The 

conductivity of the dispersed phase fluid is about 2.2 μS/cm measured with a 

commercial conductivity meter (Eutech 2700, Thermo Fisher Scientific). Mineral oil 

(M5904, Sigma Aldrich) with 5% wt/wt of non-ionic surfactant (SPAN 80, Sigma 

Aldrich) flows in the two side channels as the continuous phase fluid (Qc). The 

equilibrium interfacial tension between the fluids measured is about 3.5 mN/m as 

shown in figure 3.6 previously.  

 

4.2.3 Optical setup for detection 

 

A standard epi-fluorescence optical setup is used for the detection of droplets [12]. In 

order to detect the droplets, the microfluidic device is first mounted on an inverted 

microscope (IX81, Olympus). A 473 nm blue laser with a power of about 20 mW is 

directed through the objective of the microscope and focused into the downstream 

channel where the generated droplets are flowing. When a droplet passes through 

the laser, it emits fluorescence light. The fluorescence signal is then transmitted by 

the dichroic which also reflects the backscattered laser light. A notch filter absorbs 

the remaining scattered light in order to retain only the fluorescence signal. This 

filtered signal is then reflected on a second dichroic towards a photomultiplier tube 

(PMT). The PMT (ALR 3003ELC) gain is controlled by a 0.1-0.4 V voltage source 

(AL841BELC). The PMT output is then connected to the computer through the audio 

card which digitalized the fluorescence signal (AD converter; 44.1 kHz sampling rate 

and 16 bits depth). The experimental videos are captured using a high speed 

camera (V311, Phantom).  Figure 4.1 illustrates the optical setup. 
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Figure 4.1: Illustration of the optical setup for the detection of droplets. 
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4.2.4 Data analysis 

 

In order to obtain the frequencies of the generated droplets, a Fast Fourier 

Transform (FFT) algorithm based on 16384 samples with a spectrogram of 2.7 Hz is 

used to analyze the signal. The droplet production frequencies are estimated by 

extracting the first partial (fundamentals) of the recorded PMT signal.  

 

4.2.5 Playing the music 

 

In order to play the required musical sound tracks, a calibration is first performed to 

obtain the relationship between the applied voltage and the resulting droplet 

generated frequencies. Musical scores are obtained from www.abcnotes.com. A 

home-made perl program then convert the musical scores into series of frequencies 

based on the equal temperament scale. The score is adapted by shifting it by an 

integer number of half tones to fit the accessible range of frequencies. 

 

4.3 Results 

 

4.3.1 Concept of the jukebox 

 

We use a transducing method to convert the droplet production frequencies into 

audible musical notes. Water-in-oil droplets are first generated using fixed volumetric 

flow rates for both the dispersed and continuous phase fluids. A laser is focused into 

the channel and the epi-fluorescence emitted by the droplets is detected by the PMT. 

The electrical signal from the PMT output is then analyze using FFT to obtain the 

fundamental frequency of the droplet generation. The output is then directly recorded 

using a standard computer sound card. In order to avoid saturation, the PMT gain is 

tuned to have fluorescence amplitudes which are smaller than 0.4 V. Figure 4.2 

illustrates the conceptual trial for the microfluidic jukebox. 

http://www.abcnotes.com/
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Figure 4.2: Concept of the microfluidic jukebox. (a) Microfluidic device mounted on 

the optical detection setup. The yellow reflections are the electrodes and the blue 

line is the laser focused into the channel. (b) Snapshot of the droplet formation with 

the electrical connections. (c-e) Snapshots of the droplets generated taken at various 

applied voltages. The volumetric flow rates are fixed at Qd = 50 μl/hr and Qc = 400 

μl/hr. (f-h) The corresponding fluorescence signal recorded by the sound card. Each 

peak represents one droplet flowing through the laser. 

 

4.3.2 Frequency range and musical notes 

 

We first converted the musical notes into frequencies using the equal temperament 

scale as shown in figure 4.3. This scale provides a fixed relationship between the 

frequencies and the musical notes. In this scale, the ratio between two successive 

half tones is 21/12. The notes at higher or lower frequencies are obtained by 

multiplying (higher octave) or dividing (lower octave) the frequencies by a factor of 2. 

A comparison between the equal temperament scale and the just intonation shows 

that the frequency shift between a note in both scale is at most 2%.  

 

 



80 
 

Note Note Just intonation Equal temperament 
 

DO C 264,00 261,63 

DO � C � 275,00 277,18 

RE D 297,00 293,66 

MI b Eb 316,80 311,13 

MI E 330,00 329,63 

FA F 352,00 349,23 

FA � F � 371,25 369,99 

SOL G 396,00 392,00 

SOL � G � 412,50 415,30 

LA A 440,00 440,00 

SI b B b 475,20 466,16 

SI B 495,00 493,88 

DO C 528,00 523,25 

 

 

Figure 4.3: Relationship between the musical notes and frequencies in two different 

classical scales.  

 

In order to validate the stability of the musical notes produce at the particular 

frequency, we first produce two different musical notes for several seconds using 

different AC voltages. The volumetric flow rates are fixed at Qd = 85 μl/hr and Qc = 

270 μl/hr.  At this flow rate, when the applied AC voltage is u = 0.05 V a C note is 

produce and G note is produce when u = 0.845 V. Varying the applied AC voltage 

from 0.01 to 2.15 V, the droplet generation frequencies varies from 180 Hz to 700 Hz. 

This frequency range allows all the notes in a scale to be accessible for the playing 

of musical pieces. Applying the voltages incrementally or at random, the same 

relationship between the applied voltage and detected frequency is obtained. This 

indicates that system has no hysteresis in the electrical actuation. The results are 

also reproducible from devices to devices with only a small variation in the shape of 

the curves. We believe that the small variation is due to the variation of the micro-

fabrication technique. Figure 4.4 shows the measurement and calibration results 

obtained. 
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Figure 4.4: Generation of musical notes by the electrical control in droplet production. 

(a)  C note produced at a stable frequency when u = 0.05V. (b)  G note produced at 

a stable frequency when u = 0.845V. (c) The detected frequencies when the voltage 

is varied. The volumetric flow rates are fixed in this case. (d,e) Illustration of the 

specific frequencies over the whole scale using different applied voltages. (f) The 

time trace of the frequency spectrum showing both the fundamental frequency and 

the harmonics of the signal. 

 

We also investigate the stability of produced frequencies over a longer period of 

about 2000 s to determine the variability of the system (figure 4.5).  We examine 3 

different cases with and without the applied voltage. For the case of with the applied 

voltage, we use the musical note A at droplet production frequencies of 440 Hz and 

880 Hz. Experimental results show that for the case of without the applied voltage, 

the variability in the measured frequency is about 3.8 %. With the applied voltage, 

the variability is 3.6 % and 2.5 % for the 440 Hz and 880 Hz case respectively. The 
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observed variation in the frequencies with time is due to the mechanical stability of 

the syringe pump used to inject the fluids into the microfluidic devices. In order to 

circumvent this, the calibration of the frequencies and the applied voltages is run 

before the musical pieces are played to reduce the detuning due to this variation.  
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Figure 4.5: Stability of a note as a function of time. On the left, are the frequencies as 

a function of time. On the right, are the distributions of frequencies over the whole 

measurement window. 

 

 4.3.3 Response time of the system 

 

We investigate here the response time of the system in order to determine the 

switching capabilities between different musical notes. An amplitude modulation (AM) 

signal is applied to the system at fixed volumetric flow rates. The AM signal is 
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obtained by multiplying a 50 kHz sinusoidal signal of U = 500 to 1040 V with a 

square wave signal. The frequency of the square wave signal varies between 40 to 

400 Hz. In order to determine the speed of the response, the AM signal is 

synchronize with the triggering of the high camera. This enables the video of the 

droplet formation process to be captured when the AM signal is applied. The videos 

are then analyzed with a simple image processing tool (Matlab, Mathworks) to plot 

the space time diagram of the droplet formation. The space time diagram is obtained 

by using a symmetry line in the center along the flow direction of the droplet. The 

black droplet interface appears as the white traces in the space time diagram due to 

the intersection with the symmetry line. In the diagrams, the slope of each line 

represents the speed of the droplets while the spacing between the lines represents 

the size of the droplets. Figure 4.6 represents the space time plots obtained at 

different flow rates and AM signals. 

 

 

 

Figure 4.6: Space time diagrams obtained at various volumetric flow rates and AM 

signals. (a) When Qd = 75 μl/hr and Qc = 500 μl/hr. The AM frequency is 40 Hz and 

the amplitude is 1000 V. (b) When Qd = 200 μl/hr and Qc = 1600 μl/hr. The AM 

frequency is 40 Hz and amplitude is 500 V. (c) When Qd = 200 μl/hr and Qc = 1600 

μl/hr. The AM frequency is 400 Hz and amplitude is 500 V. 
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Experimental results shows that when the volumetric flow rates are fixed at Qd = 75 

μl/hr and Qc = 500 μl/hr and AM frequency is 40 Hz, the system takes less than 25 

ms to modulate the size of the droplets formed. This is represented by a change in 

the spacing between the lines indicating droplets of different volume. At fixed 

volumetric flow rate of Qd = 75 μl/hr, the frequency of the droplet generated can be 

related by Qd = fV using mass conservation. Here f is the frequency of the generated 

droplet and V is the volume of the droplet. The equation indicates that at fixed 

volumetric flow rate of Qd, a change in the size of the droplet (V) will result in a 

proportionate change in the frequency in the droplet generated.  

The space time diagrams also indicate that the process is highly repeatable and 

reliable as similar white traces of repeating patterns are observed in each of the 

tested parameter.  We further test the response of the system by first increasing the 

volumetric flow rates and decreasing the modulation amplitude to 500 V (figure 4.6b). 

The AM frequency is fixed at 40 Hz. This allows droplets to form at higher 

frequencies (500 Hz) and also avoiding the formation of the jetting regime. In this 

case, experimental results show that the response time of the system is less than 

12.5 ms and the modulation of the droplet size is easily attained at 40 Hz. In the last 

case, we increase the AM frequency to 400 Hz and also observed a modulation in 

the size of the droplets formed. Here we postulate that the response time of the 

system is at least in the order of 2.5 ms or higher.  

We believe that the system is capable of obtaining faster response if experimental 

parameters such as the geometry of the channels and the fluids used are optimized. 

However, the fast response times obtained in the experiments is sufficient to switch 

the musical notes required to play the music. 

 

4.3.4 The Microfluidic Jukebox 

 

The electrical approach demonstrated above allows the fast switching of the droplet 

formation frequencies to play different notes in a musical sound track. However the 

approach does not create pauses between each different note due to the continuous 

flow of droplets. In order to distinguish between the notes, we generate a pause by 
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switching off the laser through the use of electronic programming (Labview, National 

Instruments). This operation allows identical notes to be distinguished and also 

pauses to be created that is needed in musical sound tracks.  

Figure 4.7 illustrates the instrumentation process of the microfluidic jukebox. The 

sound track of the songs are obtained from abc score (www.abcnotation.com). The 

scores are then transformed into a frequency vs time file via a home-made Perl 

program. The frequency sequence is then converted to the actuation voltage based 

on the tuning of the calibration which is run before the music is played and recorded. 

We also take into account the characteristic behavior of our system where the 

droplet frequency varies significantly during the transition from dripping to jetting. 

This transition in the droplet formation regime results in a frequency range which is 

not readily accessible. In this case, the Perl program adapts the musical piece to our 

microfluidic jukebox by shifting the frequency by a certain number of half tones until 

all the notes can be played. We finally use a Labview program to automatically set 

the required voltage and laser control in order to play the musical sound tracks.   

We played two musical sound tracks with our microfluidic jukebox. For the first piece, 

Ode to Joy, the required frequencies are in the range of 170 to 340 Hz. The musical 

notes are reliably reached and played with an error of less than 5 %. In order to test 

the limit of our microfluidic jukebox, we played a more demanding musical sound 

track namely Flight of the bumblebee which require faster switching between the 

notes and sharp transition over a larger range of frequencies. In this case, the 

microfluidic jukebox also follows the scores but a larger error is observed. Figure 4.8 

depicts the comparison between the target frequency and the measured frequency 

for both the cases.   

 

http://www.abcnotation.com/
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Figure 4.7: The Microfluidic Jukebox. (a) Illustration of the instrumentation process. 

(b) Musical scores of the piece Ode to Joy. (c) Calibration curve of the microfluidic 

device. (d) The conversion of the scores to the frequencies and actuation voltage 

required for the piece via the Perl program. (e) The signal are recorded and analyzed 

to determine the frequency spectrum of the sound as a function of time. (f) 

Recording of the voltage and frequencies for analysis. (g and f) Analyses done on 

the measured frequencies as a function of the target frequencies.  
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Figure 4.8: Accuracy in playing the targeted notes. (a) Ode to Joy and (b) Flight of 

the Bumblebee.  
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4.4 Discussion 

 

The microfluidic jukebox demonstrated here provides means to hear the sound 

produced by trains of micro-droplets. Another possible application is the use of it as 

a tool to determine the monodispersity in the generated droplet trains. While 

conventional method uses imaging processing to measure the size of the droplets, 

one could effectively use this new technology to instantly hear if the production of the 

droplets is changing over time.  

Our system is also reminiscent of the bubble piano developed by Minnaert [99]. He 

produces musical songs by generating bubbles of controlled size and then uses the 

resonance at different sizes to produce musical notes. In contrast to his system, our 

approach does not rely on the resonance of the bubble size to produce musical 

notes but rather the instabilities of a liquid jet due to an AC voltage induced electric 

field. We do not use the pressure wave in the system to produce music sound tracks. 

In our system, a transduced signal of the corresponding droplet formation frequency 

is used instead. 

 

4.5 Conclusion 

 

In conclusion, we demonstrate a musical interpretation of droplet based microfluidic 

using the technology developed in the previous chapters. The use of the AC voltage 

induced electric field allows the droplets formation frequencies to modulate reliably at 

time scale of milli-seconds. This fast actuation in turn provides the means to produce 

musical sound tracks through the transduced frequencies.  

 

 

***Movies and sound tracks related to this chapter can be obtained from the 

following supplementary material of the following link: 

http://www.nature.com/srep/2014/140430/srep04787/full/srep04787.html 

http://www.nature.com/srep/2014/140430/srep04787/full/srep04787.html
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Chapter 5: Conclusion and outlook 

 

5.1 Conclusion 

 

The main objective of this thesis was to develop a tool to actively and reliably control 

the size of the droplet generated in a microfluidic device. This is achieved by using 

an AC voltage induced electric field coupled in a microfluidic flow focusing device. In 

the propose method, the electrodes are not in contact with the fluids and no 

alignments of the electrodes with the microchannels are needed. This eliminates 

undesirable electrochemical effects such as electrolysis which occurs at high 

voltages and in turn affects the stability of the droplet generated. An additional level 

of convenience is also given to the end users as the devices can be fabricated easily. 

We have also addressed several important issues in this thesis. In chapter 2, we 

present the conceptual results obtained and discuss on the improvements to both 

the designs and experimental works. These results lay the physical ground work 

needed for the subsequent chapter. In chapter 3, we studied extensively on the 

influences of various important parameters using a simplified design. Experimental 

results obtained suggested the importance of both the applied sinusoidal signal 

frequencies and conductivities of the dispersed phase fluid. Depending on the 

configuration of the electrodes, the voltage divider rule can be applied to obtain an 

electrical equivalent model to calculate the voltage at the tip of the dispersed phase 

fluid. We found that the system behaves akin to a high pass filter where the ratio of 

f/k is the sole parameter influencing the phenomenon. Below the cut-off, the voltage 

at the tip reduces to only about 25 % and results in a transition from the unstable 

jetting to the dripping regime. The calculated value agrees well with the phase 

diagrams presented in all the 3 different configurations. However, we are still unable 

to explain the transition from the stable to the unstable jetting regime which occurs at 

various frequencies and conductivities. 

We also present an electrohydrodynamic model to account for both the 

hydrodynamic and electrical effect. The proposed effective capillary number takes 

into consideration the effect of the Maxwell stress which acts in the opposite normal 
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direction to the Laplace pressure. Power laws describing the scaling of the diameters 

of the droplets in both regimes are also presented. A weak dependence is observed 

when the droplets are formed in the jetting regime. The proposed model also does 

not dictate the transition from the dripping to the jetting regime.  

In chapter 4, we demonstrate the both the robustness and reliability of the concept 

by producing musical sound tracks using the microfluidic jukebox. The response time 

of the system is also investigated using different AM modulation signals at different 

volumetric flow rates. Experimental results show that the system is able to respond 

to the electrical actuation at time scale as fast as 2.5 ms. We played two very 

different musical pieces namely Ode to Joy and Flight of the bumblebee using the 

microfluidic jukebox. Slight variations between the target frequencies and the 

measured frequencies are obtained for both pieces. 

In summary, we have shown that this method of active control is a convenient and 

versatile to control the size or frequencies of the droplet generated in a microfluidic 

device. The additional level of control provided by this method is of potential interest 

for high throughput droplet based applications. 

 

5.2 On-going and Future work 

 

At this point, some elements of this work are still under investigation and various 

collaborative projects have been formed with different groups. The study of 

influences of the viscosity ratio between the fluids in this system (Asst Prof Elena 

Castro-Hernández, Universidad de Sevilla), the transition between the stable jetting 

to the unstable jetting using numerical simulations (Prof Alfonso M Gañán-Calvo, 

Universidad de Sevilla) and the influence of different liquid crystals (Dr Venkata 

Subba Rao Jampani, MPI-DS). Experimental works have also been completed for 

the study of mineral oil without the use of surfactants and the analysis is still in 

progress. This work could be extended in various directions, a comparison with the 

incorporation of the orifice as shown in chapter 2, the formation of Taylor’s cone to 

produce submicron droplets and the effect in different geometrical configurations. 
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A Material and methods 

 

This section describes the material and methods used in the course of this thesis. 

 

Continuous phase fluid 

Mineral oil (M5904, Sigma Aldrich) with 5% wt/wt of non-ionic surfactant (SPAN 80, 

Sigma Aldrich) is used as the continuous phase fluid. The fluid is prepared by mixing 

1.895 g of SPAN 80 in 36 g of mineral oil.  

Dispersed phase fluid 

The dispersed phase fluid used is milli-Q water or milli-Q water mixed with either 

NaCl salt or HCl solutions by weight in concentrations stated in the text. The mixture 

with the highest concentration is first prepared and the remaining concentrations are 

obtained by standard dilution method. 

Microfluidic devices 

The microfluidic devices are replicated from SU-8 masters and bonded to ITO 

glasses (CG-60IN-S215, Delta Technologies) using standard air plasma. The 

devices are flushed with Aquapel solutions before use. The fabrication process of 

both the SU-8 masters and PDMS are shown below. 

SU-8 Masters 

The following recipe is used for the making the master mold. 

1. Clean the silicon wafer repeatedly with Isopropanol and Acetone solutions.  

2. Blows dry the wafer with nitrogen gas. 

3. Place the wafer at a 200 °C hot plate for 20 minutes for dehydration baking. 

4. Remove the wafer and allow cooling to room temperature. 

5. Spin coat SU-8 3025 at about 2100 rpm to achieve a thickness of 35 μm. 

6. Place the wafer for soft baking at 65 °C for 3 minutes, 95 °C for 12 minutes 

and then 65 °C again for 1 minute. This step cooling reduces the thermal 

stress. 
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7. Remove the wafer for cooling for about 30 minutes. 

8. Clean the photo-mask with Isopropanol and dry with nitrogen gas. 

9. Expose the wafer with the photo-mask using the EVG exposure unit. Use hard 

contact mode for about 15 seconds exposure time. 

10.  Place the wafer for post exposure baking (PEB) at 65 °C for 1 minute, 95 °C 

for 4 minutes and then 65 °C again for 1 minute.  

11. Develop wafer for about 10 minutes with occasional shaking. 

12. Check by cleaning with Isopropanol solution. A white residue will form if the 

development is not complete. 

13. After complete development, clean with Isopropanol solution and dry wafer 

with nitrogen gas. 

14. Hard bake at 150 °C for 2 minutes. 

15. Measure the depth of the channels at various locations. 

 

Replication with PDMS 

1. PDMS (Sylgard 184 elastomer kit, Dow Corning) is mixed with the cross linker 

in the ratio of 10:1. 

2. The mixture is degassed under vacuum for 1 hour until all the air bubbles are 

removed and the mixture becomes clear. 

3. The SU-8 master is clean with Isopropanol and dried with nitrogen gas.  

4. The PDMS mixture is poured over the SU-8 master and cure at 85 °C for 2 

hours. Bubbles induced during the pouring are remove by gently blowing over 

the surface of the mixture. 

5. After curing, the replicated designs are cut and peeled off from the master 

mold. Fluidic access holes are punched with a 0.75 mm Harris puncher. 

6. The PDMS devices and ITO glasses are cleaned with Isopropanol and Milli-Q 

water.  

7. Dry first with nitrogen gas and then keep in at 85 °C oven for 1 hour. This is to 

ensure that no residue fluids remain on the devices. 

8. Remove and bond with air plasma for 35 seconds. 

9. Place in 85 °C oven for another hour to improve the bonding. 
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Electrodes 

1. Place the bonded microfluidic devices on a hotplate at about 70 °C which is 

slightly higher than the melting point of the alloy. 

2. Insert the alloy into the fluidic access holes slowly. 

3. Insert the wire connections. 

4. Secure the wire by placing UV glue around the wire. 

5. Cure the UV glue under a UV lamp for 10 minutes. 

 

Surface modification 

 

1. Flush the microfluidic channels with nitrogen gas. 

2. Flush with Aquapel solutions and leave it there for a few minutes. 

3. Flush away the aquapel using nitrogen gas. 

 

ITO Electrode  

 

1. Clean the ITO glass with Isopropanol and Acetone solutions. 

2. Blows dry with nitrogen gas. 

3. Place the ITO glass at a 200 °C hot plate for 20 minutes for dehydration 

baking. 

4. Spin coat HPR 504 at about 3000 rpm to achieve a thickness of 1.6 μm. 

5. Soft bake at 100 °C for 6mins. 

6. Remove the ITO glass plate from the hotplate and let it cool to room 

temperature. 

7. Expose using EVG Mask Aligner for 5s using hard contact. 

8. Develop with HPRD-429 for 1 minute. 

9. Post exposure baking at 100 °C for 6 minutes. 

10. Etch away the exposed ITO using HCl : H2O : HNO3 = 4:2:1 mixture for 20 

minutes. 

11. Immerse the ITO glass plate into Microstrip 2001 for 3 minutes to remove the 

photoresist. 

12.  Inspect under a microscope. 
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B Electrical models 

 

The voltage divider rule is used to derive the expressions for the different electrode 

configurations.  A typical example for electrode in configuration A is shown below: 

 

U
tip

AC

C
I

CE

Uapp

R

 

 

For an AC source, we consider the impedance of each component. Hence using the 

voltage divider rule, the following expression can be derived: 

 

F I
tip app

F I E

Z Z
U U

Z Z Z

 
  

  
 

 

In this configuration, the bottom pair of the electrodes is grounded. Hence, the 

potential difference is Utip ≈ Utip -0. Similar expressions and methods can be obtained 

for all the different electrode configurations.  
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