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Droplet-basedmicrofluidics appears as a key emerging technology for theminiaturization and automation of bio-
chemical assays. In terms of technology, it stands on two basic pillars: microfluidic devices on the one hand and
emulsions on the other hand. Huge progress has been made on large scale integration of devices and batch pro-
duction of devices. The limiting factor for a full application of the technology is actually not device development,
but rather the robust control of emulsion formulations to be used in these devices. We here review the basic
problems related to emulsions relevant for microfluidic applications and open up on new promising applications
for these systems.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Simple liquids do not necessarily mix. It reflects the fact that various
compounds interact differently at themolecular level. However, immis-
cible liquids transiently exist in mixtures in the form of dispersions. An
emulsion, is a dispersion of small droplets into a continuous phase,
stabilised by a third compound, typically surfactant molecules [1]. The
properties of the resulting mixture –mechanical, rheological, chemical –
are essentially different from those of both individual liquids, creating
complex fluids of practical interest for applications. Many products of
our daily life are based on these disperse systems, from food colloids
to pharmaceutical and cosmetic formulations, drug delivery systems,
to just cite a few applications [2]. The kinetic stabilisation of dispersions
is essential to maintain the properties of themixture over time. Recent-
ly, the enormous potential of emulsion droplets as miniaturized reac-
tion vessels has been exploited to provide novel assay systems [3,4].
Interestingly, the idea of using droplets as microreactors has already
been brought up in the middle of the 20th century [5]. The real
breakthrough came with the recent advances in the droplet-based
microfluidic technology [6–11]. Droplet-based microfluidics emerged
at the very beginning of the 21st century as a subdomain of
microfluidics [6]. It employs immiscible phases that are flowed through
microchannels such that homogeneous shearing of the liquids results in
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the formation of emulsions with discrete monodisperse droplets. The
technique allows for the production and precise manipulation of cali-
brated emulsion droplets at high rates (up to several kHz), unleashing
an enormous potential for high-throughput screening applications,
single cell analysis, DNA-based diagnostics or drug screening [12–19].

The emulsions produced in microfluidics are unconventional from a
material point of view: each droplet has typically an individual compo-
sition at every time step, depending on the initial loading of compounds
and on the biochemical processes taking place in the droplet (Fig. 1(A)).

As a result, new types of ageing mechanisms are to be expected in
these emulsions. First, the flow of droplets in microchannels affects
the stability of the droplets (Fig. 1(B)), and induce ageing of the emul-
sion by manipulation of individual droplets [22,23,21]. Understanding
and controlling these ageing processes are a prerequisite for an efficient
use of the technology [11]. It is therefore important to understand the
dynamics of surfactant-laden interfaces on the flow of droplets in con-
finement, at the time-scale of droplet manipulation (typically ~1 ms)
and at the lengthscale of the microchannels (typically 1–100 μm). As
an emulsion, the droplet assembly ages according to the classical ageing
processes, such as flocculation, coalescence, gravitational separation,
and Ostwald ripening [1]. In addition, molecular transport of solutes be-
tween the droplets – driven by differences in chemical potential of en-
capsulated molecules – is driving the system towards its equilibrium.
This process is not really crucial for emulsions used in material science
as all droplets are virtually identical in composition. Here such a
transport process leads to cross-talk between droplet microreactors
[24–27]: the concept of individual, independent microreactor ultimate-
ly breaks down at sufficiently large time-scale, compromizing the
feasibility of assays based on the compartmentalization approach.
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Fig. 1.Microfluidic manipulation of emulsions. (A) Complex emulsions are produced using microfluidics. Each droplet in the emulsion can have its own individual composition as shown
herewith fluoresent dyes (Reprintedwith permission from Lim et al. [20] Copyright 2015, AIP Publishing LLC). (B) Themanipulation of emulsions inmicrochannels leads to new types of
ageing processes that need to be understood and controlled (Reproduced in part from Rosenfeld et al. [21] with permission of The Royal Society of Chemistry).
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The understanding of mass transfer – and ageing processes in
general – in these emulsions is essential for the establishment of
platforms usable for biotechnological high-throughput applications.
Reversing the viewpoint, the control of these transport processes be-
tween droplets can also open new ways to temporally programme the
composition of droplet microreactors and design novel materials and
microsystems.

2. Manipulation of emulsions in microfluidics

2.1. Droplets in microchannels

The most widely used channel geometries for microfluidic droplet
production are the T-junction and the flow-focussing geometries –
where the breakup of a stream of a first fluid is induced through shear-
ing by a second fluid [6,28,10] – or step emulsification –where capillary
forces at a step change in the height of a microchannel drives droplet
formation [29]. In all cases, highly monodisperse droplets are formed
due to the homogeneous shearing and the controlled emulsification
conditions. Droplet production frequencies are ranging from a few to
more than 10 kHz [30,31,20] with volumes down to the femtolitre
range [31,32]. Several techniques have been developed to further
manipulate, sort, split, trap or fuse droplets in microfluidic devices
[10]. Besides their interest for applications [15], the tools for
immobilizing, arranging and spacing droplets in a predefined way,
allows significantly reducing the degree of freedom of an emulsion sys-
tem and quantitatively address the dynamics of interfaces at small
scales. Such tools appear especially interesting as a means to study
physico-chemical processes in emulsions at the length-scale and
time-scale of relevance. From a technology view-point, controlling the
physico-chemical properties of the formulations used in microfluidics
is essential to guarantee that droplet manipulation in channels is
effective and reliable.

Themanipulation processes inmicrofluidics are controlled by sever-
al dimensionless numbers. The viscosity ratio between both phases, the
ratio of the droplet size to the channel dimension, and all the hydrody-
namic dimensionless numbers control the droplet behaviour, in addi-
tion to all the dimensionless numbers defined to account for channels
geometry. Among others, the capillary number Ca = ηU/γ, where η is
the viscosity (usually taken for the continuous phase), U the droplet
velocity and γ the interfacial tension, has a crucial role. As an example,
the capillary number controls the splitting of droplets at a constriction
during flow (Fig. 1(B)) [21]. For a fixed processing speed (or
throughput), reducing the capillary number is favourable to guarantee
that interfacial effects dominate the physics of the system. Therefore η
should be ‘small’ and γ ‘large’. This condition determines what an effi-
cient surfactant formulation should be for a reliable manipulation of
the droplets: the continuous phase should have a viscosity as low as
possible while the interfacial tension should be as high as possible. We
will see below how formulations based on fluorinated oils match
these requirements.

2.2. Understanding the dynamics of surfactants at interfaces

The surfactant plays a key role in the stabilisation of the interfaces.
The dynamics of the droplet deformations will be determined by the
properties of the surfactant. Classically, surfactant adsorption is mea-
sured using tensiometry on large volumes. It was, however, shown
that the dynamics of adsorption of surfactant is essentially different at
‘large’ scales compared to ‘small’ scales [33]. Here, large and small are
defined by a discussion on the two limiting cases for adsorption: the
adsorption is either limited by the bulk diffusion of the surfactant to
the interface (diffusion-limited adsorption) or by the reaction rate
of adsorption of molecules to interface (kinetic-limited adsorption).
The crossover between both regimes occurs for a droplet size
R* = D/kadsΓ∞ where D is the diffusion constant, kads the forward rate
of adsorption and Γ∞ the maximum interfacial concentration of
the surfactant. Typically, R* is of order 10–100 μm [33]: At small
scales, adsorption/desorption controls the dynamics of surfactant.
Tensiometry on large volumes (even using pendant droplets with vol-
umes of ~1 μL) is diffusion limited and does not provide the relevant in-
formation to understand the surfactant dynamics at the scale of
emulsion droplets. Over the past years, microfluidic systems have
been designed to address the questions dealing with interfacial
tensiometry at the relevant scales [34,35] with a recent focus on the dy-
namics of surfactant-laden interfaces [36–38]. In this context, a full un-
derstanding of droplet flow in the presence of surfactant is far from
being reached. Open-questions involve the dynamics of interfaces in
confinement and the role ofMarangoni stresses and interfacial rheology
on the behaviour of droplets in confinement.

3. Mass transport in emulsions

The second class of problems related to ageing deals with the trans-
port of compounds between the droplets. Mass transfer between emul-
sion droplets occurs as a result of phase partitioning due to a finite

Image of Fig. 1


185P. Gruner et al. / Current Opinion in Colloid & Interface Science 20 (2015) 183–191
solubility of the dispersed phase (or its solutes) in the continuous
phase [39,40] or alternatively in the bilayers possibly forming between
droplets [41].

3.1. Ostwald ripening

In brief, the chemical potential μ(r) of molecules of the dispersed
phase is a function of the droplets radius r [42]:

μ rð Þ ¼ μ∞ þ 2γVm

r
ð1Þ

μ∞ being the chemical potential in bulk, Vm as their molar volume and γ
as the interfacial tension. The dependence of the solubility S of an
emulsion droplet on its size is then described by the Kelvin equation:

S rð Þ ¼ S∞ exp
2γVm

rRT
ð2Þ

with S∞ as the bulk solubility of the dispersed phase in the continuous
phase, R as the ideal gas constant and T as the absolute temperature.
In polydisperse emulsions, heterogeneities in chemical potential and
solubilitiesmust equilibrate. Thediffusion of the solutes of thedispersed
phase in the continuous phase results in a net mass transport from
smaller to larger droplets. Hence, small droplets shrink on the expense
of larger droplets that grow in size, ultimately resulting in a temporal in-
crease of the average droplet size and a reduction of the interfacial area
of the emulsion (Ostwald ripening). In the presence of a third species,
insoluble in the continuous phase, its osmotic pressure Π ≈ RTΔc will
oppose the Laplace pressure. Both contributions should be considered
to determine the evolution of droplet sizes and the conditions
where monodisperse emulsions can be stabilised [42]. Interestingly,
such transport processes are used to measure metabolism of micro-
organisms in a quantitative manner making use of the variation of com-
position in individual droplets as a biochemical process is takingplace in
the droplet (in this case, sugar consumption by yeast) [43].

3.2. Solute transport

According to similar considerations, the net transport of solutes be-
tween emulsion droplets is a consequence of heterogeneities in the
chemical potential of solutes among the droplets. A finite solubility of
solutes in the continuous phase generally results in the leakage of com-
pounds from the emulsion droplets. The release ratewas described to be
dependent on the partition coefficient of the solutes between the dis-
persed and the continuous phase [39,40] while interfacial properties
were shown to influence the rate of release [44–49]. A decrease in the
rate of release was also observed when replacing hydrogenated with
fluorinated components as the continuous phase [50,45,48]. This effect
was attributed to changes in the interfacial tension, the size of the sur-
factantmolecules and higher cohesive energies between thefluorinated
surfactant molecules [47]. However, the partitioning coefficient of most
organic molecules in the investigated water-in-oil emulsions is signifi-
cantly altered when replacing hydrogenated with fluorinated compo-
nents [51,52]. The hypothesis that interface acts as an effective barrier
to the diffusion of molecules was revised by some authors recently
[53], suggesting that no significant energy barrier formolecules crossing
an interface exists [54]. In this limit, the transport of molecules between
emulsion droplets is controlled by the diffusive flux in the continuous
phase. The concentration of solutes close to the interface (but in the
continuous phase) is then given by the concentration in the dispersed
phase and the partition coefficient K = ceq,cont/ceq,disp between both
phases. The permeability P of the oil is then defined as:

P ¼ KD
d

ð3Þ
where d is the thickness of the permeable layer. This equation is known
as Overton's rule, frequently used to described the rate of transport
through biological membranes [55,56]. In fluorinated oils, the transport
of small molecules in emulsions was shown to depend on surfactant
concentration [57], an indication that there is no significant energy
barrier to partitioning in emulsions — or at least in fluorinated oils.
This point is consistent with the scaling observed for the decrease of
transport rate upon the addition of Bovine Serum Albumine to the
dispersed phase [57].

3.3. Transport through bilayers of surfactant

The transport processes based on phase partitioning, might also
arise from transport through bilayers of surfactant possibly forming be-
tween emulsion droplets [41]. Such bilayers form upon the interaction
of surfactant monolayers adsorbed at the interface of emulsion droplets
[58]. After formation of a bilayer, the droplets become strongly adhesive
without coalescing, as a result of themolecular interactions between the
surfactant molecules [58]. Whether or not bilayers of surfactants form,
in a given emulsion system, is dependent on several parameters. For ex-
ample, the solubility of the surfactant molecules in the continuous
phase plays an important role. It was shown that changing the compo-
sition of the continuous phase significantly alters the adhesion energy
between the droplets. The energy of adhesion is essentially zero in
good solvents [58] resulting in the absence of bilayers. Hence, the adhe-
sion energy betweenmonolayers of surfactantmolecules is significantly
increased by decreasing the solubility of the surfactants in the continu-
ous phase [41]. For mass transport across bilayers, two distinct mecha-
nisms have been suggested. One is based on the partitioning into and
diffusion through the bilayer [59], the other one is based on transient
pores in the bilayer occurring due to thermal fluctuations [60]. It has
been suggested that the transient pore mechanism is dominant for
inorganic ions while the partitioning and diffusion mechanism is more
relevant for neutral molecules [61]. It was recently shown that an
increase in adhesion energy results in a lower membrane fluidity and
ultimately in a lower permeability [41].

4. Emulsions with a fluorous phase

Themost promising formulations are based on fluoro-surfactant and
fluorinated oils. Controlling these formulations is crucial for applica-
tions. We will discuss in more details the specificities and the relevance
offluorinated emulsions for their use in droplet-basedmicrofluidics.We
will not focus on the biocompatibility aspects but rather on the
physical-chemistry of the system [11].

4.1. Organofluorine chemistry

Starting from terminology, fluorocarbons exclusively contain carbon
and fluorine while perfluorinated compounds are characterized by the
replacement of all carbon–hydrogen bonds with carbon–fluorine
bonds (it should be noted that this terminology is not necessarily
strictly followed [62]).We focus here on perfluorocarbon systems as de-
fined above. The C–F-bond is highly polarized due to the high electro-
negativity of the fluorine. Fluorine is not a very good hydrogen bond
donor and does not significantly interactwith hydrogen-bonding accep-
tors [63]. The low polarizability of the C–F-bond, results in relatively
weak London dispersion forces between the molecules, which scale
with the square of polarizability [62]. Perfluorocarbon compounds
were reported as ‘extremely nonpolar’ [64] and even the least polar
existing fluids [65]: teflon, for example, has a relative permittivity of
only 2.1 [66].

As a consequence of the generally very weak interactions of
fluorinated compounds, they have a low cohesive energy (energy of
vaporization). This results in a low value of the solubility parameter
in the thermodynamic description of liquid–liquid mixtures [51].



Table 1
Stabilisers for water-in-perfluorinated-oils dispersions used in droplet-based
microfluidics. (PFPE= perfluoropolyether). Additional information for the case of surfac-
tant is available in Ref. [11].

Stabilisers Use and typical application References

PFPE-based surfactant
synthesis

Stabilisation of droplets in microfluidics [97–100]

PFPE-based surfactant Self-assembly of surfactant at droplet
interfaces

[101]

PFPE-based surfactant Microemulsification of water in
supercritical CO2

[102]

PFPE-based surfactant Catalysis of chemical reactions [103,104]
Gold-based nanoparticles Controlling the mechanics of

the interfacial layer
[96]

Silica-based nanoparticles Pickering emulsions with functionalised
silica nanoparticles (fluorosilane coating)

[95]
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Fluorocarbon are therefore miscible with aliphatic hydrocarbons [51]—
at least above a critical temperature as expected for binary mixtures
[67,68]. The critical temperature increases with the length of the hydro-
carbon chain and the length of the fluorocarbon chain: the solubility of
aliphatic hydrocarbons in fluorocarbons therefore decreases for larger
molecules [68]. The solubility of small organic molecules is usually con-
sidered to be small: as an example napthalen has a solubility in fluoro-
carbon derivatives ((C4F9)2)O and ((C3F7)3)N) of the order of 0.003
(mole fraction) at 25 °C [52]. The weak intermolecular forces result in
a relatively high compressibility of the fluids, which reflects the avail-
ability of interstitial space [62]. For that reason, respiratory gases such
as oxygen and carbon dioxide are generally highly soluble in fluorous
fluids. The solubility of oxygen in fluorocarbons is about three to ten
times higher than in the parent hydrocarbons [69]. This characteristic
makes them highly valuable for use as blood substitutes or breathing
liquids [70–72]. Furthermore, usingperfluorinated compounds as a con-
tinuous phase, cells can be cultured in aqueous emulsion droplets
[73,74]. For droplet-based screening applications, these properties are
highly valuable. The low solubility of organic molecules in fluorous
fluids results in restricted cross-talk between emulsion droplets [25]
by a reduction of the partitioning coefficient while the high solubility
of respiratory gases is a key for cell survival in droplets [75–78]. Further-
more, while conventional hydrocarbon compounds may swell the
microfluidic corematerial PDMS (PolyDiMethylSiloxane), leading to de-
vice delamination or channel deformation, fluorinated compounds are
highly compatible with PDMS [79]. Water-in-fluorinated-oil emulsions
are therefore considered to be the most promising systems for the
miniaturization of biochemical assays in emulsion droplets [11].

4.2. Phase partitioning into fluorous fluids

Due to the very lowpolarizability, fluorinated compounds are gener-
ally of extremely nonpolar character. Non-fluorous solutes, with the
exception of small gases, are in general virtually insoluble in fluorous
solvents [80]. These liquids can be valuable for the selective extraction
of molecules covalently modified with fluorous tags [81,82].

Specific non-covalent interactions result in an increased solubility of
organicmolecules in fluorous liquids [65]. The increased solubility is the
result of noncovalent associations of perfluororinatedmolecules and or-
ganic molecules based on hydrogen bonding or ion pairing. Attention
has for example been drawn to fluorous carboxylic acids. They were
shown to act as molecular receptor for organic molecules significantly
increasing their solubility in fluorous liquids. One of the first reports
came fromPalomo et al. [83]. The authors found a dramatic solubility in-
crease in fluorous solvents for fluorinated urea in the presence of fluori-
nated carboxylic acids. In the absence of any other functional groups,
carboxylic acids were shown to exist as hydrogen bonded dimers in
fluorous fluids [84]. However, it has been demonstrated that hydrogen
bonds with the lone pair of nitrogen are more stable than the hydrogen
bonds present in cyclic carboxylic acid dimers [85,86]. As a
consequence, most nitrogen H-bond acceptors are more successful at
competing for the carboxylic acid H-bonds than the carboxylic acids
Fig. 2. Switch of partitioning induced by surfactant between a hydrocarbon (DCM =
dichloromethane) and a fluorous phase (PFD = perfluorodecalin). A complex is formed
between the red dye [Rubipy3]2+ (Ru = ruthenium, bipy = bipyridine) and the
perfluoropolyether carboxilic acid RfCOOH leading to the extraction of the ruthenium
through complexation in the fluorous phase.
Reprinted from Correa et al. [88], with permission of The Royal Society of Chemistry.
themselves [87]. This in turn results in the effective extraction of organic
molecules comprising Lewis base characteristics as shown for pyridines
[87,80]. The presence of equimolar amounts of fluorinated carboxylic
acids in the fluorous phase leads to an almost complete extraction (up
to 99%) of pyridine derivatives from chloroform into the fluorous
phase [87]. Furthermore, it was demonstrated that the extraction of an-
iline in similar conditions ismuch less efficient (5%). This was explained
by the fact that pyridyl nitrogen acts as a better hydrogen bond donor
than primary amines. Moreover, it was argued that the highly selective
Fig. 3. Retention comparison between surfactant-stabilised emulsions and Pickering
emulsions (Reprinted (adapted) with permission from Pan et al. [95] Copyright (2014)
American Chemical Society). Two dyes (Fluorescein, green and resorufin, red) are encap-
sulated in nanoparticles stabilised droplets (top) and surfactant stabilised droplets
(bottom). With the surfactant, resorufin is exchanged (yellow droplets) over time while
with nanoparticles, the compartmentalization of the dye is more effective. Bottom
graph: quantitative measurement of the exchange process showing how retention is
improved using nanoparticles at the interface.

Image of Fig. 3
Image of Fig. 2
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and effective extraction is based on the fact that the substrate–receptor
interactions are reinforced in fluorous liquids, as they are considered to
be ultimate noncompetitive solvents [80]. Similar effects are observed
with dyes (Fig. 2). Surfactant formulations should therefore be opti-
mized to control the emulsion stability while avoiding transport
enhancement.

In summary, noncovalent interactions significantly improve the
extraction of organic molecules into a fluorous phase. The efficiency
is strongly dependent on the compatibility of substrate and receptor.
Particularly fluorous carboxylic acids have been studied that were
shown to form strong hydrogen bonds with nitrogen containing Lewis
bases. Understanding these interactions is important for applications
and microfluidics provides the tools to address these questions
quantitatively.

4.3. Mass transport studied in microfluidics

One of the first microfluidic studies about mass transfer in two-
phase systems was presented by Burns et al. [89]. The authors have
shown that in droplet-based microfluidic systems the mass transfer
rates between the continuous and the dispersed phase can be up to sev-
eral orders of magnitude faster than in non-miniaturized systems. The
enhancement in the interfacial mass transfer was explained by internal
convective circulation resulting from shear forces [89–91]. Courtois
et al. [24] were among the first to study the retention of organic
molecules in emulsion droplets in microfluidic environments, using an
on-chip storage system to quantify the exchange rates. Qualitatively it
was shown that the mass transfer of fluorophores between aqueous
droplets dispersed in mineral oil was dependent on the nature of the
compounds, the surfactant concentration and the number and composi-
tion of neighbouring droplets. Furthermore, it was stated that the
release of fluorophores to the continuous phase “is a consequence of
diffusion into the oil phase as well as formation of reverse micelles”
but the mechanism of mass transfer remains mostly unclear. Strikingly,
a method based on the addition of the protein bovine serum albumin
was presented to decrease the leakage of compounds from aqueous
Fig. 4. Switchable emulsions. In a three phase system, surfactants modulate the spreading par
achieved.
Reprinted by permission from Macmillan Publishers Ltd: Nature, Zarzar et al. [105], copyright
emulsion droplets. The effect was considered to be based on the forma-
tion of a protein layer at the droplet interface acting as a kinetic barrier.

Bai et al. [25] have developed a double droplet trap system to study
mass transport between emulsion droplets. The authors suggested that
the transport of small molecules is occurring “across the resultant
surfactant bilayers formed between droplet pairs”. This was justified
with the observation that “the droplets were clearly deformed, strongly
suggesting the formation of a surfactant bilayer”. However, as their trap-
ping strategy is relying on constant fluid flow through the experimental
zone to keep the droplets in contact, such deformationsmight be the re-
sult of the hydrodynamic drag force acting on the droplets. In contrast, it
was shown that the transport of the fluorophore fluorescein between
neighbouring droplets is significantly faster with a hydrocarbon
continuous phase (mineral oil, 1% Span80 (sorbitan monooleate))
compared to a perfluorinated continuous phase (FC-77 (a mixture of
perfluoro-octane and perfluorooctane-ether), 1% ‘EA’ surfactant
(Polyethylenoxide–perfluoropolyether block-copolymer)). It was
reasoned that “the nature of the bilayer determines the transfer rate of
molecules”.

However, the solubility of fluorescein in hydrocarbon and fluorocar-
bon liquids is expected to differ dramatically. Therefore it cannot be ex-
cluded that these observations are a result of a transport mechanism
based on phase partitioning rather than transport through surfactant
bilayers. Woronoff et al. [27] have shown in their experiments that the
exchange rate of small molecules between droplets is dependent on
their hydrophobicity. Their study was based on the measurement of
the retention of several coumarin derivatives in water-in-fluorinated-
oil emulsion droplets. A direct link between half-life of retention of
the fluorophores in the emulsion droplets and the predicted partition
coefficient of the dye was found. Recently the modulation of exchange
rates with various buffers and additives was also demonstrated [49,92].

Two limiting situations emerge to explain the exchange kinetics.
Either the exchange is limited by the diffusion of themolecules between
the droplets (diffusion limited transport) or by the kinetics of
partitioning across the interface (the kinetic limited transport, corre-
sponding to an ‘energy barrier’ to partitioning). Chen et al. [93] used
ameter for the three interfaces and a reversible switching between the configurations is

2015.

Image of Fig. 4


Fig. 5. Coupling of an oscillating chemical reactions to size modulation by transport processes. Starting from individual droplets of water in fluorinated oil (top left), a chemical pattern
emerges in the emulsion (revealed by the different grey levels between the droplets in the central top figure). This chemical pattern finally lead to a morphological pattern with droplets
of different sizes through coarsening and transport of water between the droplets (top right). The bottom graphs show how the grey level and droplet size evolve in time with first the
establishement of the chemical heterogeneity (twopopulationswith the initial droplet volume) and then the coarseningwith thegrowth of the clear droplets and the shrinkageof thedark
droplets. The conversion of chemical patterns into mechanical changes is a promising model for morphogenesis studies or mechanical actuations through chemical reactions.
Reprinted with permission from Tompkins et al. [107].
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numerical methods to model the transport of fluorophores between
water-in-hydrocarbon oil or alternatively in water-in-fluorinated oil
emulsion droplets arranged in a two-dimensional hexagonal packing.
The authors used a model assuming an effective permeability of
fluorophores across the droplet interface of 10–8 m s–1, which is based
on the permeability of rhodamine B across the cornea, measured in
another study [94]. The authors found, for the examined case, that
“the leakage process was rate-limited by the transport of the probe
across the droplet boundary, rather than by diffusion through the
Fig. 6. A simple bimolecular reaction is enhanced when performed inmicrocompartments. The
formation in microdroplets.
Reprinted with permission from Fallah-Araghi et al. [108], Copyright 2014, American Physical
continuous phase […]”. In contrast, Dunstan et al. investigated the
transport of reagents between water-in-hydrocarbon oil emulsion
droplets in two-dimensional hexagonal packing and report diffusion
through the continuous phase as the limiting process [54] assuming
that no significant energy barrier for molecules crossing the droplet
interface exists. Accordingly, they find that the rate limiting step of
transport is the diffusion across the continuous phase.

It is likely that both limits exist in different systems. However, the
quantitative scaling relationship for the exchange rate as a function of
coupling of adsorption at interfaces, reaction, and diffusion leads to an increase in product

Society.

Image of Fig. 6
Image of Fig. 5
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2 Of outstanding interest.
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surfactant concentration strongly suggests that transport in emulsions
is diffusion limited [57]. The transport rate decrease observed with
BSA is also fully compatible with a modification of the partitioning
coefficient and it can therefore be concluded that there are – at the
moment – no experimental data showing that kinetic barriers at inter-
faces are affecting the transport rates in emulsions. Surfactant formula-
tions should therefore be optimized to control the emulsion stability
while avoiding transport enhancement. The situation is, however,
different for interfaces that are more complex than single molecular
layers, as is the case for capsules or particle-laden interfaces.

4.4. Materials beyond surfactants

Surfactants are the basic systems usable to control the stabilisation
of interfaces. To date, the family of molecules that are usable for
droplet-based microfluidics is still limited (Table 1). Alternative strate-
gies have emerged to stabilise droplets and circumvent the problems re-
lated to molecular interactions between the surfactant and the solutes
(Fig. 3). Interfaces can be stabilised by particles as in armoured droplets
or pickering emulsions.

A series of stabilising agents have been designed to stabilise aqueous
dispersions in perfluorinated oils. The successful system involves gold
nanoparticles [96] or silica nanoparticles [95]. In thefirst case, a full con-
trol of themechanical properties was demonstratedwith the possibility
to attach cells at the droplet interface. In the latter case, the stabilisation
of the emulsions is combined to a decrease of the leakage rate of
fluorophores. Indeed the absence of surfactant in the oil phase reduces
drastically the partitioning [57] making this strategy efficient to reduce
the cross-talk. An additional interesting point is that nanoparticles-
laden interfaces are expected to have the same interfacial tension as
the bare interface. Therefore if we compare these interfaces with
surfactant-laden interfaces, at fixed capillary number, the velocity of
droplets can be increased and therefore higher throughputs are to be
expected for the manipulation of these objects.

5. New doors opening

Transport processes in emulsions are a potential problem for
biotechnology applications. In contrast, they can also be seen as an in-
teresting concept for new applications. Three of these applications will
be discussed here as promising new avenues for fluorinated emulsions,
in combination with microfluidics.

5.1. Switchable systems

The orthogonality in the properties of organic, aqueous and
perfluorinated compounds also offers new means to control interfaces.
A very striking result was obtained with three-phase systems involving
fluorinated compounds (Fig. 4). Switchable systems were designed in
whichmorphological transitions in the emulsion are reliably controlled
[105]. The order of the encapsulating phases is reversibly controlled by
external parameters (for example temperature or surfactant concentra-
tions) which offers promising switchable systems usable as new types
of materials. The crucial role of microfluidics to control this system
should be mentioned.

5.2. Relevance as biomimetic models

Compartmentalization is an essential step in the apparition of life
and in biological processes [106]. The ability to control compartmental-
ization will provide platforms usable to experimentally test hypotheses
on chemistry in simple minimal systems. Recently the coupling be-
tween transport processes in emulsions and oscillating reactions in
emulsion droplets led to a conversion of chemical patterns into
morphological patterns [107] (Fig. 5). This result is a step towards a bet-
ter understanding on how transport processes can be coupled to
mechanical systems to explain features related to morphogenesis.
The use of this concept can become extremely powerful to design
macroscopic active systems and control their behaviour through
chemical programing and self-organized processes. Here again the
role of microfluidics is to provide the tools to prepare monodisperse
emulsions leading to organized patterns.

5.3. Catalysis and enhancement of reactions in compartments

Besides the interest of interfaces as catalyst, especially in fluorinated
phases [104], chemical reactions are modulated by the presence of an
interface. It was recently demonstrated that an interfacial reaction can
contribute to the enhancement of a chemical reactions and significantly
improve the efficiency of the given reaction [108]. The basic concept to
understand the process is to compare the time it takes for a molecule to
diffuse from the interface where it is produced from two reagents to the
centre of the droplet with the time scale of the backward reaction in
bulk (Fig. 6). From this comparison, a lengthscale emerges below
which the bulk concentration is dominated by the interfacial reaction.
The coupling between reaction, diffusion and desorption therefore en-
hances a chemical reaction. This generic resultmight help to understand
the crucial role of compartments in the synthesis of large molecules,
a problem of interest for prebiotic chemistry. Here, the role of
microfluidics is to provide the tools to prepare calibrated emulsions
for a quantitativemeasurement of the reaction kinetics inmonodisperse
droplets.

6. Conclusion

In summary, droplet-based microfluidics is the key technology to
manipulate emulsions with new applications emerging in biotechnolo-
gy,material science and chemistry. The success ofmicrofluidics over the
past ten years is largely correlated with the development of surfactant
formulations in fluorinated oils. Those are especially adapted to
microfluidics for the low solubility of organic molecules in fluorocarbon
(significantly lower than in organic or mineral oils) which favours com-
partmentalization of organic molecules. In addition, new experimental
strategies provide a whole range of solutions to further improve the
systems. A whole new range of experimental systems can now be
envisioned for the study of fundamental and applied questions in a
wide variety of fields by the coupling of microfluidics and soft-matter
systems based on microcompartments.
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